
Dependable Systems made by FIRST
BOSS: Real time Operating System in Space

Sergio Montenegro
FhG FIRST
www.first.fhg.de/~sergio
sergio@first.fhg.de

DLR

BIRD Aufnahmen

DLR

DLR

BOSS...

Real time embedded operating system

Design for dependability

Design for formal verification

Support for fault tolerance

Fast, small,

.... and Open Source!

BOSS... designed for dependability

Irreducible complexity

Framework technology to reduce complexity

component technology to handle complexity
(not to create complexity)

-> + Formal verification

Complexity destroys safety

Human mental capacity

Komplexity

Required mental capacity

Design and implementation errors have their roots
in the high complexity

Safety limit

Forbidden area
To complex to be safe

Complexity of the underlying System

Eg. BIRD:
To complex to exist?

DLR

BOSS basic functions (for every thing): lists
Operations:

Insert in list
remove from list

-> So easy, so safe
-> application of formal methods becomes possible

Modell checker
Theorem prover

Simple ->Formal Verification

Simple!
10kB Foot Print

BOSS... designed for dependability

Irreducible complexity

Framework technology to reduce complexity

component technology to handle complexity
(not to create complexity)

-> + Formal verification

OS Framework:
modern software technology / engineering
Design for real time safety critical applications
cost effective

External Thread xx;
class TestThread: public Thread { // active object

void run () {
 while(1) {
 {.... do something }
 yield();
 {.... do something }
 suspend();
 {.... do something }
 suspendFor(1000);
 resume(xx);
 }
 }

};
/** Another example: **/
Semaphore monitor;
class OtherTestThread : public Thread {

void run () {
 TimeControl timeControl; //To implement time loops
 timeControl.startAt(5000); // Time point for the first time
 timeControl.every(100); // Cyclus time
 while(1) {
 timeControl.wait();
 monitor.enter(); // protected area,
 {.... do something }
 monitor.leave();
 }
 }
};
/** Create 6 threads or applications ***/
TestThread a, b, xx;
OtherTestThread x, y, z;

BOSS Framework

BOSS... designed for dependability

Irreducible complexity

Framework technology to reduce complexity

component technology to handle complexity
(not to create complexity)

-> + Formal verification

Complexity mastering
by using Components

Build the System by

plugging applications

as components

Communication by

using Software buses

and routers

Middle Ware (1): What you program

Middle Ware (2): What you can get

Distributed applications

Dynamic reconfiguration

Redundancy management

Middle Ware (3): What you can get

Fault tolerance support

multiple voters

monitors

TMR and beyond

Distributed FT

Fault tolerance support

multiple voters

monitors

TMR and beyond

Distributed FT

BOSS + Hardware

BOSS Layers
and
Portability

BOSS... designed for dependability

Irreducible complexity

Framework technology to reduce complexity

component technology to handle complexity
(not to create complexity)

-> + Formal verification

BOSS +
Applic.

C++

Gcc
Front-End

Code
Generator

Machine
Code

Execution/
Test

Logfile
with
Time

Gcc
Front-End
Gcc
Front-End

Compiler Checker

Hand Code

Operational
„ Specification“
... How to do ...

Gcc
Front-End

HOL
Generator

Gcc
Front-End
Gcc
Front-End

HOL
Operat.
Spec.

Asserts

HOL

Hand Code

Axiomatic
Specification:
What to do
What not to do

Isabelle Checker Timing Checker

Time
Cons-
traints
Temp.
Logic

HOL
seman-
tics of
C++

Valid: Yes/No Satisfied: Yes/NoConsistent: Yes/No

BOSS ...
is it correct?

Universität Karlsruhe

