
NetworkCentric
Core Avionics

RODOS
Version: 05
Date: 01.11.2008

 © Copyright DLR 2008

RODOS
overview

RODOS
Real time kernel design for dependability

Sergio Montenegro
DLR-RY (Bremen)

sergio.montenegro@dlr.de

The NetworkCentric core avionics machine consists of several harmonised components which work
together to implement dependable computing in a simple way.

The NetworkCentric Machine

Computing units (CPU +MEM) are managed by the local real-time kernel operating system (OS)
RODOS. On top of the kernel runs the software middleware (MW) of RODOS and around this
middleware the user can implement its applications (AP). To communicate with external units,
including devices and other computing units, each node provides a gateway to the network and
around the network's several devices (IO Devs and computing nodes) may be attached to the
system.

RODOS is a real-time embedded operating system (OS) designed for applications demanding high
dependability. Simplicity is our main strategy for achieving dependability, as complexity is the cause
of most development faults. The system was developed in C++, using an object-oriented
framework simple enough to be understood and applied in several application domains. Although
targeting minimal complexity, no fundamental functionality is missing, as its microkernel provides
support for resource management, thread synchronisation and communication, input/output and
interrupts management. The system is fully preemptive and uses priority-based scheduling and
round robin for same priority threads.

RODOS provides a middleware which carries out transparent communications between
applications and computing nodes. The messages exchange is asynchronous, using the publisher-
subscriber protocol. Using this approach, no fixed communication paths are established and the
system can be reconfigured easily at run-time. For instance, several replicas of the same software

RODOS Version V 05 2 / 17

RODOS
overview

can run in different nodes and publish the result using the same topic, without knowing each
other. A voter may subscribe to that topic and vote on the correct result. The core of the
middleware distributes messages only locally, but using the integrated gateways to the
NetworkCentric network, messages can reach any node and application in the network. The
communication in the whole system includes software applications, computing nodes and IO
devices.

All communications in the system are based on the publisher/subscriber protocol: Publishers make
messages public under a given topic. Subscribers (zero, one or more) to a given topic get all
messages which are published under this topic. For this communication there is no difference in
which node (computing unit or device) the publisher and subscribers are running. They may be in
the same unit, or distributed around the network. They may be any combination of software tasks
and hardware devices. To establish a transfer path, both the publisher and the subscriber must
share the same topic. A Topic is a pair consisting of a data-type and an integer representing a topic
identifier. Both the software middleware and network switch (called middleware switch), interpret
the same publisher/subscriber protocol in the same way.

1. Terms and Definitions

1.1 General terms

TERM Definition or meaning assumed in the NetworkCentric context
Criticality System state where a failure may interrupt the global Mission;

In the framework of the NetworkCentric project development the term “non-
critical” corresponds to the system state where a failure of a processor will not create
a mission critical risk or satellite safety risk.

Dependability Definition: “The trustworthiness of a computing system which allows reliance to be
justifiably placed on the service it delivers”. (From http://www.dependability.org/).
Thus, “dependability” includes as special cases such attributes as reliability,
availability, safety, and security.

Fault Tolerance The ability of a system to respond gracefully to an unexpected hardware or software
failure.

Module Entities such that failure propagation among them shall be prevented; i.e. a failure
affecting one module will cause, in the worst case, the loss of that module only.

Robustness General definition:
Property, which allows the system to perform in nominal mode with respect to
external and internal perturbations.

Resilience General definition:
Ability of the system to re-distribute tasks on a subset of processing nodes.
Definition applied in the context of the NetworkCentric applications:
Capability of the system to recover lost functions (i.e. autonomous functions) after
that robustness mechanism (graceful degradation, potentially down to “basic control
mode”) was used. Resilience is possible when failures are software only or when the
hardware failures are transient. Resilience is not possible when hardware is
permanently damaged.

Graceful degradation System mode, which happens after “robustness” mode if full resilience is not
possible, i.e. if there were permanent hardware failure.

RODOS Version V 05 3 / 17

RODOS
overview

Safety System state where it is not exceeded an acceptable level of risk with respect to:
fatality, injury or occupational illness, damage to launcher hardware or launch site
facilities, damage to an element of an interfacing manned flight system, the main
functions of a flight system itself, pollution of the environment, atmosphere or outer
space, and damage to public or private property.

1.2 Terms related to software design

If you are not an experienced programmer, then please read the following term definitions before reading the
rest of this document, or else skip this chapter entirely.

TERM Definition or meaning assumed in the NetworkCentric project
Class The prototype for an object in an object-oriented language; analogous to a derived

type in a procedural language. A class may also be considered to be a set of objects
which share a common structure and behaviour. The structure of a class is
determined by the class variables which represent the state of an object of that class
and the behaviour is given by a set of methods associated with the class.

Super Class (Or "superclass") The class from which another class (a "subclass") inherits, the class
it is based on.

Sub Class (Or "subclass") In object-oriented programming, a class that is derived from a base
class by inheritance. The derived class contains all the features of the base class, but
may have new features added or redefine existing features.

Inheritance In object-oriented programming, the ability to derive new classes from existing
classes. A derived class (or "subclass") inherits the instance variables and methods of
the "base class" (or "superclass"), and may add new instance variables and
methods. New methods may be defined with the same names as those in the base
class, in which case they override the original one.

Override When a subclass redefined a method of its super class
Specialise To inherit, to create a sub class from a super class
Framework In object-oriented systems, a set of classes that embodies an abstract design for

solutions to a number of related problems.
Thread Sometimes called “Runalbe”, is an object which may get CPU time. A Thread has

own stack and context. Many threads may share the same CPU.
Method The name given in object-oriented languages to a procedure or routine associated

with one or more classes.
Application /
Building Block

Own RODOS Definition: A set of Threads, Messages and passive objects to provide a
user defined service, for example obstacle recognition. An Application is a (atomar)
unit which can be moved as a whole from node to node.

Object In object-oriented programming, an instance of the data structure and behaviour
defined by the object's class. Each object has its own values for the instance variables
of its class and can respond to the methods defined by its class.

Instance /
Object from a class

An individual object of a certain class. While a class is just the type definition, an
actual usage of a class is called "instance". Each instance of a class can have
different values for its instance variables, i.e. its state.

Singleton If there exactly one object for a class. Usually they shall have the same name, with
the only difference: The class name begins in upper case, the object name begins
with lower case. (RODOS directives)

Middleware SW layer which facilitates communication and coordination of components in
distributed systems. The NetworkCentric Middleware uses Topics to identify message
distributions patterns.

RODOS Version V 05 4 / 17

RODOS
overview

Topic A Topic is a pair: data-type and an integer representing a topic identifier. Topics are
used as communication channels to distribute messages in the middleware and in
the network. A messages will be published under a given topic and any subscriber to
that topic will get a copy.

Service,
Network of services

Services may be produced by software applications or by io devices. Services may be
plugged together in a network of services distributed in different hardware units.
Please do not confound a network of services and the hardware network to
interconnect hardware units.

2. Introduction
RODOS is the gearwheel of the NetworkCentric core avionics machine, which controls activities in
the computing units/nodes (processors, CPUs, Memory).

The RODOS real-time kernel and middleware provide an integrated Object-oriented (OO)
framework interface to multitasking resources management and to the NetworkCentric
communication infrastructure. The RODOS framework seeks to offer the simplest and smallest
possible interface to user applications, while still providing all the required functionality and
flexibility. It includes time management, CPU and memory management.

The RODOS middleware provides communication between applications, networks and all devices
attached to the network. The fault tolerance support implemented in the middleware allows us to
create dependable systems using unreliable components. In our concept, a hardware failure is not
an exception, but a normal case, which can be expected and has to be handled. RODOS
redundancy management supports different strategies to provide the highest possible
dependability, our target, which is the ultra high dependability using a principle which the world
has since forgotten: Simplicity.

Simplicity does not mean, however, lack of functionality. Real time scheduling, resource
management, synchronization, middleware and simple communication and all the functions one
can expect from a microkernel are implemented – just as simply as possible. An important RODOS
design target is the irreducible complexity; this is the minimal possible complexity for a determined
function. When it becomes no longer possible to implement it simpler without destroying the
functionality.

RODOS is based on very few and simple basic functions. Applications running on top of RODOS
are implemented using object-oriented technology, resulting in highly modular application
software. Applications running on the top of the RODOS middleware are built using the schema of
software building blocks. Several (simple) building blocks (called applications) can be distributed
and interconnected in a computer+devices network using the NetworkCentric core avionics
protocols, to build more complex functionality. Building blocks can be implemented and tested
independently of each other. Building blocks can be interchanged without having to modify other
blocks or interfaces.

RODOS Version V 05 5 / 17

RODOS
overview

3. RODOS Core
RODOS was designed as a framework offering the following features:

• object oriented C++ interfaces,
• Ultra fast booting
• real time priority controlled primitives multithreading,
• time management (as a central point),
• thread safe communication and synchronisation,
• Event propagation

RODOS can be executed on embedded target hardware and on top of Linux. Applications can be
moved from one host to another without modifications. The on-top-of-LINUX implementation
helps developers to work locally on their workstation without having to use the target system. To
move to the target, they have only to recompile the code. The behaviour is the same, except for
timing requirements and time resolution, which on LINUX cannot be as exact as in the target
systems.

Applications may be implemented by creating active and passive objects. Active objects may get
CPU-time from the underlying core as reaction to time, to events, to message distribution and to
requests from the object itself. To create an active object the user just needs to inherit and
instantiate from the interface classes Thread, Event and/or instantiate Subscriber (Middleware
Interface) objects.

The central element in the core is the time. The time begins at 0 (boot time) and increments
continuously in nanosecond steps until “End-Of-Time” which is about 150 years into the future.
This time controls almost all activities in the core.

Many threads may run (apparently) simultaneously. Each thread may run until it is suspended for a
time period by itself (typically) or by other thread (not usual). To suspend a thread one may call
explicitly the suspend() method, or access a synchronised object which may suspend its caller.
Examples are entering a semaphore, reading from synchronised fifos, waiting for Messages, etc.
Such synchronised objects just call the suspend() method of the caller, if it has to be blocked.

RODOS Version V 05 6 / 17

RODOS
overview

Suspending and resuming threads

A Thread may be suspended (blocked) until a time point, then it will be resumed automatically
when the corresponding time point is reached. If a Thread shall be suspended without limit, we
use the time point “End-Of-Time”.

Any suspended thread may be resumed automatically at a time point or explicit at the moment by
calling the resume() method. This may be done by other thread or by an event (time or interrupt
server). Calling the resume() method may be explicit or may be contained in a synchronised object.
For example when leaving a semaphore, the leaving thread will see if another thread is waiting to
enter. If so, the corresponding resume will be called. This is implemented inside of the semaphore,
the user just calls Semaphore::leave().

The core may activate event handlers too, to react to a time point or to an interrupt. Event
handlers have to be very short, because they are executed in interrupt mode and while an event
handler is being executed all other interrupts will be blocked. Event handlers may resume threads
and manipulate data, like normal threads. Event handlers are usually used to implement IO-
accesses, but in the NetworkCentric model, IO-Accesses are implemented as messages going and
coming to the network where IO-Devices may be attached. Therefore Event Handlers will be
scarcely used in RODOS programs.

As said before many threads and event handlers may be executed apparently simultaneously. If
we have only one CPU then only one Thread or one event-handler will be executed at any time
point. Whenever an event handler shall be executed any possible running thread will be shortly
interrupted to execute the handler and then the interrupted thread may continue. We can say
events have the highest priority in the system. When an event handler is executed the hardware
interrupts are blocked. The next event handler may be executed only after the current one returns
(terminates); events handlers can not be interrupted.

From all threads which are ready to run (they are not suspended at the current time point) the
one with the highest priority will be executed first. If another thread with higher priority becomes

RODOS Version V 05 7 / 17

RODOS
overview

ready to run the current thread will be interrupted and the one with higher priority will be
executed (preemption). If a thread is suspended, then the scheduler will search for the next one
with the highest priority. At the end of the list is the idle thread which is always ready to run, but
has priority 0. If two threads have the same priority, a round robin procedure will be used. In one
sentence: a “fair priority controlled preemptive scheduling”. Note: priorities are non-negative
values from 0 to 2^31 (unsigned long int).

preemptives CPU Scheduling

4. RODOS Middleware

The RODOS middleware was designed to support fault tolerance. All threads (and applications)
running on top of the RODOS middleware can exchange messages asynchronously using a
publisher / subscriber protocol. The RODOS middleware distributes (and replicates) messages locally
in each computing node and using gateways it may cross node boundaries to reach all units in the
network. Internally the middleware, gateways and hardware network (Middleware Switch) use all
the same NetworkCentric protocol. Units attached to the network can be computing nodes and IO
devices in the same way. The communication protocol is based on the most simple possible
implementation (we were able to design) of the publisher/subscriber protocol.

This gives us very high flexibility and users do not have to differentiate between local/remote
communication and between any combination of software/hardware/device communication.

Communication relationships can be very dynamic. Units may disappear or appear, tasks may be
migrated, activated or deactivated at any time. The position of applications can even change
(migration) at runtime, without requiring any explicit reaction of the other involved applications.
There are no fixed communication paths. Each data transfer is resolved just in time using the
registered communication topics.

The middleware imposes no limitations on communication paths, but the user shall use/create a
meaningful, reasonable and efficient inter-task communication structure.

RODOS Version V 05 8 / 17

RODOS
overview

Publishers make messages public under a given topic. Subscribers (zero, one or more) to a given
topic get all messages which are published under this topic. To establish a transfer path, both the
publisher and subscriber have to share the same topic. A Topic is a pair of data-types and an
integer representing a topic identifier. Both of the components - software middleware and
network switch (called middleware-switch) interpret the same publisher/subscriber protocol in
the same way.

Topics in the Middleware

Software applications may access an arbitrary number of topics, both as subscriber and as
publisher. Devices, on the other hand, publish or subscribe typically only one topic and, according
to the NetworkCentric model, are attached preferably to the hardware network. For very small
systems or in exceptional circumstances devices may be attached to a computing node (bu this is
not recommended). In this case the device interface (IO) shall be encapsulated into a
publisher/subscriber pair and attached to the local middleware.

Complex functionality may be implemented as a network service which is implemented into
applications and which may be distributed using topics. A Topic may then be considered as a
communication channel with an arbitrary number of writers and arbitrary number of readers and
which may be distributed in different hardware units.

Threads and even event handlers may publish data in a non-blocking manner. For this purpose
each topic provides a method Topic::publish(). As response to publish(), the topic will search its list
of subscribers and notify each of them. Each subscriber provides a putter object which handles the
delivery of messages. It may just register the data or it may resume a waiting thread.

RODOS Version V 05 9 / 17

RODOS
overview

Message distribution using topics

A local middleware distributes messages only locally. To access external units, computing nodes
and devices one or more gateways have to be added to the local middleware. Gateways are smart
publishers and subscribers which are not fixed to a single topic. They may listen to all topics and
may publish messages in any topic. Gateways marshal internal middleware messages in an external
format in order to send them to other hardware units. This external protocol may be, for example,
a wireless protocol or Ethernet, SpaceWire, RS 322, MIL, radio communications, etc. The opposite,
when the gateway gets messages from external units, it unmarshals the data and transforms it to
the internal middleware format. Then using the corresponding topic it publishes the message
locally.

Using this model the network of services may be distributed in several computing units, several
satellites and even between satellites and ground stations. This network would allow us to
substitute the typical command/telemetry procedures by a NetworkCentric network of services.

RODOS Version V 05 10 / 17

RODOS
overview

Gateways and networks

The network is implemented using intelligent middleware switches, which can interface different
protocols in order to be able to access different devices. A middleware switch implements
internally the same topic protocol just like the software middleware. Each port of the middleware
switch implements a (different) protocol converter, like a gateway, to access external units like for
example computing nodes and IO devices. In the case of IO-Devices, the protocol converter
substitutes the typical IO-Driver of conventional systems.

RODOS Version V 05 11 / 17

RODOS
overview

The Middleware switches (Hardware)

5. Applications and building blocks
To build a complex functionality and even perhaps many different functionalities in the same
system, which is the typical case in satellites, it is advisable to encapsulate simple and clear cut
related functions in building blocks – here called applications – and to plug such blocks together
thereby building a network of applications/building blocks (not to be confused with the hardware
network). Adding devices to the network we get a network of services.

Applications (or building blocks) may encapsulate threads, messages, event handlers, passive
objects etc. From outside it shall not be visible to the innermost being of the application. The only
interfaces to an application are messages which can be distributed/subscribed. Each applications
shall provide one specific service to the system.

Applications encapsulate elemental components

RODOS Version V 05 12 / 17

RODOS
overview

The network of services consist of applications and devices distributed in several computing units
and hardware. Actuator devices do not produce information services but physical services. The
opposite are the sensor devices, which build an interface from the physical world to the
information world. Software applications stay (inputs and output) in the information world and the
devices (sensors and actuators) are the bridge from the information world to the physical world.

There may be different system configurations for the distribution of applications in nodes and even
all applications may run in the same node (typical configuration in small systems).

Example of distribution of applications

A services network may be extended (or modified) to provide more functionality without having to
modify the individual building blocks. For example we may add instrumentation for debugging and
a data logger by just adding new building blocks to the network.

RODOS Version V 05 13 / 17

RODOS
overview

Adding applications to the network of services

To build fault tolerance, both producers and consumers of services may be replicated. For the
programmer there is no difference if one or more replicas are working in the same network. To
merge outputs from several sources we need voters which may intercept messages, select the
most probable correct one and forward it to the device. Even voters may be replicated.

Surely, we recommend the replication of sensors and actuators, too. But this step is not a part of
the operating system and middleware description. This topic is handled in the NetworkCentric
overview paper. Following some possible configurations which may be distributed in different
computing nodes.

RODOS Version V 05 14 / 17

RODOS
overview

Adding fault tolerance by just plug and play

RODOS Version V 05 15 / 17

RODOS
overview

6. Programming Interface
RODOS offers an integrated framework (OO) interface. Both core and middleware together will be
called the RODOS-framework. The RODOS framework aims to offer the most simple and small as
possible interface to user applications, which still provides all required functionality and flexibility.

The RODOS-framework includes time management, resource management and communication
functionality. Without an application the framework is inactive. An application can add actions to
the RODOS-framework by inheriting classes and creating active objects. These objects will be
integrated automatically into the framework. In this way the framework will be extended with user
functionality.

The framework technology is a further step following the object-oriented technology, where the
functionality is provided by OO methods encapsulated in classes and other functionality by means
of inheritance. A framework is composed of several classes in a structure with different
relationships: inheritance, references and contention. The whole structure has a specific
functionality. The user can adapt its functionality to his needs as follows: Some classes in the
structure provide the adaptation interface (inheritance) for the user, while other classes offer just a
function/method interface like the “normal” procedural interfaces.

To adapt the functionality of the framework to his need, the user writes new classes, which inherit
from the adaptation interface classes (subclasses). Some adaptation interface methods shall be
overloaded with user methods and functionality in order to integrate the user functionality into the
framework. The new (user) subclasses and its objects are integrated automatically (by inheritance)
into the structure and the user does not need to register them manually. This makes the
integration much simpler and reduces mistake sources.

A software system consists of a collection of passive and active objects. The passive objects just
offers data and methods to be accessed by active objects. Some of these methods can, however,
provide means for synchronisation for threads.

Active objects will be activated (executed) by the underlying system. They may get the CPU (time)
as a reaction to time-points, events or requests. The most common example of active objects are
the threads. Many threads may run (apparently) concurrently.

Time is a very central point for the RODOS framework. Execution of threads is mainly controlled by
time. Each thread can define periodic execution or just time points when it shall be executed. The
RODOS framework will try to satisfy all these time requirements. If more than one thread requests
the CPU for the same time, then the conflict will be resolved according to priorities. The thread
with the higher priority will be executed next.

There may be exclusive regions, where maximum one thread may execute a piece of code, or
situations when a thread waits for a signal or data from another thread. RODOS provides means
for such thread synchronisations, using semaphores, and synchronous data FIFOS.

Another class of active objects are the events. The user can define zero or more eventhandlers to
react to events. The most popular example of events are time events, which produce a reaction
when a time point is reached. Another example is the reaction to external events (interrupts). User
eventhandlers shall provide a handle function which will be called when the corresponding event
arrives.

RODOS Version V 05 16 / 17

RODOS
overview

And the last class of active objects are the middleware subscribers. A middleware subscriber may
wait for a determined type of message (topic). When an expected message arrives, the
corresponding subscriber will be activated.

The following picture is an example of user applications which extend threads and events to add
functionality to the framework. The same can be done to subscribers. Passive objects like objects
from the synchronisation classes may be instantiated and used without inheritance.

Framework interface to RODOS

For examples and explanations please refer to the RODOS tutorials: core, Middleware,
Middleware_distributed, primefinder and support_programs. Read the corresponding readme.pdf
files.

RODOS Version V 05 17 / 17

