
SPACECRAFT AREA NETWORK (SCAN) FOR PLUG
AND PLAY OF DEVICES

Pestana Conference Centre – Funchal, Madeira - Portugal
31 May – 4 June 2010

Sergio Montenegro,
Benjamin Vogel

DLR-RY
Robert-Hooke-Str 7

23359 Bremen, Germany
Sergio.Montenegro@dlr.de,

Benjamin.volgel@dlr.de

Vladimir Petrovic,
Gunter Schoof

IHP GmbH
Im Technologiepark 25

15236 Frankfurt (Oder), Germany
petrovic@ihp-microelectronic.com
schoof@ihp-microelectronics.com

Andreas Herrholz
Kim Gruettner

OFFIS
R&D Division Transportation

Escherweg 2 - 26121 Oldenburg -
Germany

andreas.herrholz@offis.de
Kim.Gruettner@offis.de

ABSTRACT

By the definition of an (four our systems) “Standard” spacecraft area network (SCAN) we target
three of the greatest problems we face with the avionics development of every new spacecraft are:
1. The huge cost and long development time due just to the interfaces specification: Our strategy is
what we call network centric computing. We aim to create a spacecraft area network (SCAN) to
which all devices and computers are attached. We aim to create a high speed interconnection link
definition, which is so simple that it can be implemented and used by each and every one. We have
already reference implementations which may be distributed as open source for both: FPGA IP
cores and software Middleware.

2. The extremely high costs and almost no post-development reuse of the board computer. The
reason for such arm reuse possibilities, is that normally IO devices are attached directly to the
computer and each mission have different IO devices. In our concept, the board computer will not
have any devices attached to it (it performs just computing and storage functions) therefore the
same computer may be used in many different missions which have different device configurations
and different IO Devices. All devices are truly network devices and are attached only to the
network.
3. ITAR restrictions and low performance of European space-qualified hardware: We create
dependability using non dependable COTS components attached to our dependable network. Such
COTS components have no ITAR restrictions and an order-of-magnitude higher performance than
space-qualified ones. The only radiation-qualified and dependable component is the network and it
is built in Europe.
Besides solving the main problems, we get a very high performance low cost core-avionics system.
Its distributed character allows distributed development. It has a very high adaptability and
flexibility. Tasks may be migrated from one computing node to another in order to balance the load
and to compensate failures.
We use the same communication protocol for software applications, for the network and for the
devices. All communications in the system are based on the publisher/subscriber protocol (in
software and in hardware). Publishers make messages public under a given topic. Subscribers
(zero, one or more) to a given topic get all messages which are published under this topic. To
establish a transfer path, both the publisher and the subscriber must share the same topic. A topic is
represented by a topic ID and a data type.
The services are distributed in the (Software/Hardware) network from producers (publishers) to

mailto:Kim.Gruettner@offis.de
mailto:andreas.herrholz@offis.de
mailto:schoof@ihp-microelectronics.com
mailto:petrovic@ihp-microelectronic.com
mailto:Benjamin.volgel@dlr.de
mailto:Sergio.Montenegro@dlr.de

consumers (subscribers). This does not depend on if the services are produced by software
components or by hardware components. The same applies to the consumer of services.
The network is based on a publisher/subscriber protocol which is implemented our open source
RODOS operating system, as a software middleware for the software tasks and in a FPGA as a
middleware switch for hardware devices and to interconnect computing nodes. An ASIC
implementation of the network is in work.
The central component of our network centric concept is the network which is the heart of the
system. If it fails, the system fails. Therefore to create a dependable network we use redundant
robust components, with ultra fast recovery time. The building block of the network is the
middleware switch, which logical view is way very similar to a software middleware.
The middlware siwtch is being implemented as a radiation hard ASIC from IHP and at the same
time OFFIS crates a system-C model of its functionality to be able to validate our concepts by
means of high level simulation, before the chip is created. The models will be distributed as open
source to facilitate the use of the SCAN concepts for new users. The high level simulation is used
primary to validate algorithms and to estimate routing performance. Beside this, the model is used
to simulate anomalies, overloading, messages corruptions etc. in order to validate our fault tolerance
concepts.

The Middleware Switch, through hierarchical view has three main modular groups: communication
ports, communication links and a central processing unit (LEON-2 CPU). Communication ports are
connected via the switch matrix or DMA channels. The DMA channels are configured to transfer
the data between ports and main memory. The switch matrix may be used to forward high speed
messages directly between ports using a multi cast protocol. The internal CPU may communicate
with every port, to the switch matrix and to DMA controller to monitor and control their
configuration, the data traffic and flow control.

The Middleware ASIC will be developed in SGB25V - 0.25µm IHP BiCMOS technology. Several
radiation tests have shown the radiation immunity of this technology. As a consequence, the IHP is
going now the next step to get a ESA qualified process for space products which should be reached
in 2010. To increase the radiation immunity even more, IHP is working on new design techniques
for SEL (Single Event Latch-up) and SEU (Single Event Upset) tolerant designs.

1. MOTIVATION
Three of the greatest problems we face with the avionics development of every new spacecraft are:

1. The huge cost and long development time due just to the interfaces specification (IDC =
Interface control Document) which has to be written and specified for every satellite from
scratch. This consumes at least one working year and many individual years.

2. The extremely high costs and almost no post-development reuse of the board computer. This
is due to the fact that all devices are attached to the computer and the device configuration is
different for almost every satellite. This implies a required redesign of the board computer
for every new spacecraft.

3. ITAR restrictions - USA export restrictions for space qualified components (and sometimes
for software too) - and low performance of European space-qualified hardware.

With the definition of our Spacecraft Area Network (SCAN) we target these three main problems
and many other “minor” inconvenient factors which we face in every avionics development.
Our strategy is what we call network centric computing. We aim to create a spacecraft area network

(SCAN) to which all devices and computers are attached. We aim to create a high speed
interconnection link definition, which is so simple that it can be implemented and used by each and
every one. We have already reference implementations which may be distributed as open source for
both: FPGA IP cores and software Middleware.
The network switch will be developed in Europe as ASIC. This ASIC will be distributed at
production cost, with some supporting hardware. We aim to create a community (e.g. an opensource
community for the development of the operating system) to use and further develop the network
centric approach.

2. SOFTWARE PROTOCOL AND HARDWARE NETWORK

Our interconnection link defines a very simple message distribution protocol. Each message in the
network receives a topic tag which identifies its content and purpose. Examples of topics could be:
position, temperature, and attitude. Services will be published as topics regardless of whether they
are produced by software tasks or by hardware devices. Any application or device may subscribe to
the topics which it needs to help to produce its services.We have already implemented a very simple
software building blocks execution platform to support this concept. It includes a middleware which
operates with the publisher/subscriber protocol.
Publishers make messages public under a given topic. Subscribers (zero, one or more) to a given
topic receive all messages which are published under this topic. To establish a transfer path, both
the publisher and the subscriber must share the same topic. A topic is represented by a topic
identifier (ID) and a data type.
This method will be used to interconnect service providers and consumers. In order to be able to
attach COTS (Commercial Off The Shelf) devices (with their own protocols) to the network, the
network will provide the required interfaces and protocol converters. The COTS devices receive
and send their own messages, and then the protocol converters translate them into our internal
“universal language”. The network will perform all required transformations in order to make the
message transport transparent.
The current FPGA implementation of the network may support different protocols. The next
generation (being building now) will be based on an ASIC switch, which can support only two
different physical links: our own high speed “Simple Synchronous Serial Protocol” (S3P) and a
simple UARTS. To access other low level protocols (e.g. CAN, SPI, I2C, SpaceWire) we aim to
develop bridges and remote terminal controllers (RTU). In FPGA implementations such bridges and
converters may be implemented in the same chip just like with the network. The ASIC cannot
support as many different protocols, however. In any case the bridges and RTUS will be transparent
for the message distribution.

3. CURRENT DEVELOPMENT
The targets of our current activities are:

- high speed serial interfaces (50 to 200 MBit/sec)
- network switch as submicron ASIC for 32 Ports (0.25 micron and 0.13 for the next step)
- bridges and RTUs for COTS devices
- a high speed (200 MIPS) board computer based on FPGAs
- building blocks execution platform software, including a middleware
- satellite management software and
- fault-tolerance and redundancy management software

Some of these technologies are already implemented.
The first version of the ASIC network switch (0.25 micrometer technology) will be ready by 2010.
It will be radiation resistant and latch-up immune. We plan a further development based on 0.13
micron technology to include redundancy for fault tolerance. The software will provide redundancy
and fault-tolerance management.

4. EXPERINCE FROM FORMER PROJECTS

Or concepts are based on our experience from former satellites we have build and from new
spacecrafts which are being developed now.
BIRD is a German small satellite. It was built to observe terrestrial fires via infrared spectroscopy
and was launched in 2001. TET is similar to BIRD in design and its mission is to validate new
space technologies. The launch of the TET satellite is scheduled to take place in 2010. In both cases
the central element in their architecture is the board computer which has to provide computing
power, storage (mass memory), input/output interfaces for many (> 20) data buses and devices. The
central element has to be dependable and robust. It has to manage the redundancy and, additionally,
it has to execute its real-time job. Therefore such a computer system becomes very complex,
expensive and susceptible and is not reusable in different missions with different input/output
devices. Even TET’s similarity to BIRD required a new development of the board computer,
because a few of the devices needed to be substituted.
The BIRD and TET main computers were implemented using four computers. BIRD is totally
based in COTS technology, TET has both Rad-Hard and COTS. One of the 4 nodes (the so called
worker node) controls the satellite, while a second node (monitor node) monitors the correct
operation of the worker node. In case the worker fails, the monitor takes over the job of the worker
while the crashed node performs a recovery cycle.
Two other node computers are spare components and are disconnected. In case of a permanent
failure of one running computers, the spare computer pair will be used instead of the failed pair.
Both BIRD and TET are only a small step beyond state of the art. They have more redundancy than
is normal because they are based on COTS (not space-qualified) components. The redundancy
management is performed in software. A lot of functionality which normally is implemented in
hardware, in BIRD and TET is implemented in software and takes advantage from the higher
redundancy and redundancy management.
Our Network Centric Concept is based on our experiences with BIRD and TET. We saw what to
improve to get a faster development, to get higher reuse, and to get higher dependability and
performance at lower cost.

5. TECHNICAL IMPLEMENTATION

We are currently developing, for a series of satellites, a high performance generic board computer
(called SSMMU) based on FPGAs. These board computers may be used to control the satellite and
at the same time to process and store the payload data, but the central element will not be the
computer any more, but the network, which can interconnect many buses and devices, including
computers and mass memory devices. In this architecture the computer is not a central element,
therefore it may be very simple, cheaper and have lower dependability requirements.
The entire functionality of the avionic system will be obtained by plugging hardware and software
components together. Each of these components shall be replaceable without having to modify the

rest of the system. To guarantee dependability, the only component which shall be dependable is the
network. Our technology research is concentrated on the network which will include intrinsic
redundancy and will be built using European radiation-resistant components. The redundancy
management will again be executed through software.
The Network Centric approach provides much higher dependability, flexibility, scalability and
performance. The current implementation of the network relies on commercial high-capacity
reprogrammable gate arrays (FPGAs). We are currently developing, together with a microelectronic
partner IHP (Innovations for High Performance Microelectronics, http://www.ihp-
microelectronics.com), a 32-Ports middleware Switch ASIC using their submicron radiation
tolerant technology (0.25 micron). 16 of such ports are simple UARTS and 16 implement our high
speed simple serial link S3P. The next generation will be based on 0,13 Micron technology and will
be able to handle up to 32 full duplex data links, 16 of them high speed links with up to 200
Mbits/second each. This means more than 6.4 Gbits/second throughout the network.
DLR has implemented the RODOS (Realtime Onboard Dependable Operating System,
http://www.dlr.de/rodos) execution platform, which may also be used as a standalone real-time
operating system. RODOS includes a middleware which is compatible with the network messages,
so allowing a smooth integration and mixing of services provided by both software and hardware.
RODOS is already available free as an open source project.

All communications in the system are based on the publisher/subscriber protocol.
Reminder: Publishers make messages public under a given topic. Subscribers (zero, one or more) to
a given topic get all messages which are published under this topic. To establish a transfer path,
both the publisher and the subscriber must share the same topic. A topic is represented by a topic ID
and a data type.

On the software side the middleware implements an array of topics which may be compared to
hardware buses. Each time a message is published under a given topic, the middleware checks for
all subscribers that wish to receive it. Each one will receive a copy of its content. To go beyond the
limits of the computing node we use gateways which may read all topics and forward them to the
network and vice versa (Figure 1)

Figure 1: Software Middleware and Gateways

The building block of the network is the middleware switch, which logical view is way very similar
to the software middleware (figure 2).

Figure 2: Logical view of the Middleware Switch (not the hardware implementation view)

The middleware switch implements (using internal software) an array of gateways connected to an
array of virtual topic buses. In the hardware there is a switch matrix to interconnect port instead of
an array of topics (see next chapter). The gateways distribute locally all incoming messages,
whereas all other gateways select the messages which they will then forward, convert them to the
corresponding protocol and send them using the associated link. It makes no difference what we
find on the other side of the link, whether it is another network, a node computer, a device or a bus
for devices.

6. MIDDLEWARE SWITCH ASIC

The Middleware Switch, through hierarchical view has three main modular groups: communication
ports, communication links and a central processing unit (CPU). Communication ports are
connected via the switch matrix or DMA channels. The DMA channels are configured to transfer
the data between ports and main memory. The switch matrix is controlled by the CPU – in this case
Leon 2 processor – in real-time and may be used to connect high speed ports directly to each other.
Furthermore one link of the switch matrix is connected to a DMA channel to allow the traffic to the
memory. The CPU may communicate with every port, the switch matrix and DMA controller to
monitor and control their configuration, the data traffic and flow control. The Processor reads the
topic ID directly from a message and after processing in software, gives a corresponding instruction
to the switch matrix. The first ASIC implementation consists of 16 high speed S3P - simple
synchronous serial - ports, 16 UART ports, Leon 2 core processor and switch matrix (figure 3).
Further implemented functions are a debug unit, programmable timers, pulse generators and
counters as well as built-in-self-test (BIST) features.

Figure 3. Basic concept of the Middleware Switch ASIC

In architecture development process, we agreed to have two different port connecting systems. For
S3P ports we are using a switch matrix, which basically consists of multiplexers. Transfer data are
buffered in FIFO buffers, which are implemented together with ports. For UART ports we are using
DMA controllers and the AHB processor bus to transfer data between ports and external memory
(not shown in fig. 3). All messages which are stored in the memory may be manipulated by the
CPU before the transmission to any destination device.

The Middleware Switch uses a uniform internal protocol to allow simple switchable connections
between very heterogeneous devices. Therefore all ports are using protocol converters to convert
between external used protocols and the internal format. To allow different device types to be
connected to the same port pin the protocol converters must be configurable. The most important
configurations are related to message framing, flow control, synchronization and header
information (topic ID, message length). If any new protocol format is not yet implemented in the
port hardware the message must be transferred into the memory and the CPU can do the protocol
conversion. Therefore the implemented concept is very flexible and even cascading several ASICs
is possible.

The Middleware ASIC implementation uses integrated hardware handshaking but supports also
handshaking by software. Because of different communication protocols even software
handshaking must be recognized and handled by the port logic. As a result devices can send and
receive flow control commands via the Middleware Switch to avoid data losses and re-
transmissions. Such commands (Stop, Continue) can be transmitted anytime within or between
messages. This is very useful and necessary when devices communicate with different speed to
each other and the internal buffers are running out of memory space..

The presented ASIC implementation of a Middleware Switch uses Leon 2 IP core from Aeroflex
Gaisler© (formerly Gaisler Research) as the processor unit; the DMA core from Synopsys© Design
Ware library; and all other components (memories, FIFOs, EDAC, ports and all control logic) from
IHP GmbH.

The error detection and correction (EDAC) module is used to protect the data written into memory.
The EDAC algorithm is based on Hsiao coding scheme and provides one bit error correction and
two bits error detection. Registers, flipflops and latches should be protected through TMR (Triple
Modular Redundancy) or DMR (Double Modular Redundancy) which we will implement in a
future design.

The Middleware ASIC will be developed in SGB25V - 0.25µm IHP BiCMOS technology. Several
radiation tests have shown the radiation immunity of this technology. As a consequence, the IHP is

CPU

32 bit

Instruction
 Cache

Data
Cache

Serial I/O (S3P) Serial I/O (S3P) Serial I/O (UART) Serial I/O (UART)

Serial I/O (S3P) Serial I/O (S3P) Serial I/O (UART) Serial I/O (UART)

Port I/F
Protocol

Converter
FIFO

Port I/F
Protocol

Converter
FIFO

FIFO
Protocol

Converter
Port I/F

FIFO
Protocol

Converter
Port I/F

Port I/F
Protocol

Converter
DMA

Port I/F
Protocol

Converter
DMA

DMA
Protocol

Converter
Port I/F

DMA
Protocol

Converter
Port I/F

D
M
A

going now the next step to get a ESA qualified process for space products which should be reached
in 2010. Therefore the IHP could become an important European supplier for space qualified ASICs
contributing to more ITAR-free products in Europe.

To increase the radiation immunity even more, IHP is working on new design techniques for SEL
(Single Event Latch-up) and SEU (Single Event Upset) tolerant designs. The main goal is to
develop radiation tolerant designs for space applications without wasting much chip area and power
consumption. The improved design technique should accept SEU and SEL effects, which could not
be avoided by technological means, and correct them in background without affecting the real-time
behavior of the running system.

Further versions of the Middleware Switch ASIC should comprise a full fault-tolerant design. In
parallel first activities will be started to get more information about radiation immunity of the IHP
130nm technology.

7. HIGH LEVEL MODELING OF THE NETWORK

To support the specification and development of the ASIC implementation a configurable high level
model of the Middleware Switch has been developed. The model abstracts from many of the details
of the ASIC design but still reflects the correct functional and timing behaviour of the switch. The
model has been developed using the C++ based system-level modelling language SystemC which is
available under an open-source license including a free reference implementation.
Initial motivation for the SystemC model was to allow early exploration of different architecture
options for the ASIC to find an acceptable balance between costs, dependability, flexibilty and
performance of the ASIC. For instance, larger FIFO buffers can compensate more variations of data
bandwidth and latency of connected devices but also have significant impact on the area costs of the
chip. Similarly more complex routing and scheduling algorithms may serve for a better balanced
and fair distribution of the available bandwidth but may also require a faster and therefore larger
and more costly controller within the switch.
Due to the modularity and configurability of the switch model all of these different architectural
parameters can be modified to generate different implementation variants of the switch. These
variants can either be tested by simulation in smaller application scenarios using traffic generators
and error injectors but may also be integrated into larger network models simulating different
topologies and architectures with multiple switches and network nodes. Also the software
controllable features of the switch like routing, scheduling and flow control can be tested and
modified during simulation runtime.
In future, it is planned to extend the SystemC simulation model to a virtual prototyping
environment combining the SystemC simulation of the network and hardware components with the
RODOS execution platform. This will allow designers of SCAN systems based on our approach to
create functional and timing accurate virtual prototypes of complex avionics systems. Using these
models the influence of the network on the timing and functionality of the overall system can be
simulated and evaluated long time before the final hardware is available. Moreover the system
architecture of computation nodes, sensors, actors and the network can be varied very easily
enabling the exploration of trade-offs between redundancy, dependability, performance and cost of
the whole system.
As part of the strategy to create an community around the set of software and hardware IP for the
SCAN it is planned to release the virtual prototyping environment also as open-source to provide a
free and extendible development platform for design and simulation of SCAN-based systems.

8. SUMMARY

Our response to the three main problems mentioned before is:

Problem 1: Many different ICDs to specify.
Solution 1: We create a standard plug and play interface.

Problem 2: Almost no reuse of board computer.
Solution 2: The board computer will not have any devices attached to it (it performs just computing
and storage functions) therefore the same computer may be used in many different missions which
have different device configurations.

Problem 3: ITAR restrictions and low performance space qualified devices -
Solution 3: We create dependability using non dependable components attached to our dependable
network. Such COTS components have no ITAR restrictions and an order-of-magnitude higher
performance than space-qualified ones. The only radiation-qualified and dependable component is
the network and it is built in Europe.

Besides solving the main problems, we get a very high performance low cost core-avionics system.
Its distributed character allows distributed development. It has a very high adaptability and
flexibility. Tasks may be migrated from one computing node to another in order to balance the load
and to compensate failures.
9. REFERENCES
[1] Bärwald W. and Montenegro S., BIRD-Spacecraft bus controller, Small Satellites for Earth
Observation, Vol. 3, 371-373, 2001
[2] Sergio Montenegro, Jan-Thimo Grundmann, Bobby Kazeminejad, Peter Spietz, The new DLR
Standard Satellite Bus series (SSB), Small Satellites Systems and Services - The 4S Symposium,
German Aerospace Center, 2008
[3] Mottola, S., Börner, A., Grundmann, J.T. , Hahn, G., Kazeminejad B., Kührt, E., Michaelis, H.,
Montenegro, S., Schmitz, N., Spietz P.: AsteroidFinder: Unveiling the Population of Inner Earth
Objects, 59th International aeronautical congress, 29th September to 3rd October 2008, Glasgow,
Scotland.
[4] BIRD (Bispectral InfraRed-Detector
http://www.dlr.de/rb/en/desktopdefault.aspx/tabid-2731/6724_read-6311
[5] TET Technology Experiments Carrier
http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-2274/3396_read-5085
[6] Schoof, G., Kraemer, R., Jagdhold, U. Wolf, C., Fault-tolerant Design for Applications Exposed
to Radiation, Proceedings of the Conference DASIA 2007 - Data Systems in Aerospace, 2007.

