
RODOS operating system for Network Centric Core Avionics

Dr. Sergio Montenegro & John Richardson
Core Avionics Group

DLR – German Aerospace Agency
Bremen, Germany

sergio.montenegro@dlr.de

Abstract—Network centric core avionics attempts to solve the
question of simplicity and dependability in computing by means of
a fault-tolerant and robust architecture called middleware. By this
means software services can be distributed via nodes which are
non-dependable and which can migrate in the case of node failure,
thus creating a reliable network of unreliable parts.

Proposals-With the network centric approach the aim is to try a
new paradigm of dependable computing for space applications.
Instead of having a powerful all-embracing computer to the centre
of the design, there is instead a powerful network which connects
many undependable and simple units including computers, mass
memory and I/O devices.

Fault tolerance shall be supported by turning devices and
computers on and off and turning equivalent functionality on. Only
the network shall remain dependable.

Results-The corresponding operating system and middleware
(RODOS) and software simulations of the network, computers and
some devices have been implemented. Using this simulator the
fault tolerance can be shown by turning simulated computers and
devices off and the system will stay operable in real time.

Currently a physical demonstrator is being implemented which will
be called “Levitator”. The Levitator will have the ability to make a
piece of metal float in a 3-dimensional space in real time. Even if
there is a complete failure of the computer or peripheral devices
the piece of metal shall continue to float and move smoothly.

Keywords-component; middleware, RODOS, NetworkCentric

I. INTRODUCTION

Dependability is a main issue for space applications but
after more than 30 years of research into how to achieve
dependable computing, the general solution has still not been
found. There are many proposals as to how to achieve fault
tolerance, robustness, or fault prevention etc., but not a
single solution is globally accepted.

The main risk factors in a typical core avionics
development are the complexity, software-hardware
interfaces and the difficulties in handling many different
interfaces in a single system. These topics shall be addressed
in order to achieve high dependability.

Simple devices have one fixed topic to publish messages
and one fixed topic to subscribe messages. More complex
devices, however, may subscribe to a set of fixed topics
which will be written in the topic list of the corresponding
output port. Computing nodes may have a variable list of
topics, because the subscribed topics depend on the software
which is currently running. Such synapses may receive from
the corresponding input port new lists of topics to update
dynamically the corresponding subscriber list of the output
port, at any time. The current middleware switch
implementations are FPGA-based without CPUs. Using
(internal) CPUs more intelligent middleware switches may
be implemented which provide higher functionality, network
routing, automatic link interruptions detection and, for
example, may collect periodically all subscriber lists to
inform computing nodes which topics are expected by any
attached nodes.

The NetworkCentric protocol relies on the exchange of
messages asynchronously using a publisher / subscriber
protocol. This provides a very high flexibility and users do
not have to differentiate between local/remote
communication and between any combination of
software/hardware device communication.

Publishers make messages public under a given topic.
Zero, one or more subscribers to a given topic receive all of
the messages which are published under this topic. To
establish a transfer path, both the publisher and subscriber
have to share the same topic. Both components - software
middleware and network switch (called the middleware-
switch) interpret the same publisher/subscriber protocol in
the same way.

Communication relationships can be very dynamic. Units
may disappear or appear (turned off/on), and software tasks
may be migrated, activated or deactivated at any time. The
position of publishers and subscribers can even change
(migration) at runtime, without requiring any explicit
reaction of the other involved communication partner. There
are no fixed communication paths, and each data transfer is
resolved just in time using the registered communication
topics. Topics are global communication channels in the
whole system, covering software applications and hardware
devices, without making any difference of node / hardware
boundaries.

Typical data systems for space applications are computer
centric. The central component is a computer to which all or
most devices are attached. This computer is responsible for

mailto:sergio.montenegro@dlr.de

handling devices, communication, computing, and storage of
data.

The aim is to create a new concept of core avionics
systems which targets fault tolerance as a natural part of the
concept. In this approach the central component is not the
computer but a distributed fault tolerant network system.
This provides dependability to the network to which a set of
independent redundant components can be attached such as
devices, simple computing units, and mass memory units,
etc. Any of these devices have the possibility to fail in which
case the network manager will deactivate the failed device
and replace it with an activated, redundant one providing the
same services.

The most effective and safe way to implement a complex
parallel system is to compose it as a network of simple
sequential tasks. These tasks may be executed by software,
such as steering control, or by hardware components such as
those providing temperature measurements. The aim is to
unify software and hardware so there shall be no difference
between services provided either by software or by
hardware. All service providers communicate using the same
communication protocol and unified messages and use the
same interface. When using a service there shall be no
difference between how it was implemented (software,
hardware, or both) and where it is being executed (in which
computing node or device).

Figure 1: Communicating Applications

The NetworkCentric core avionics machine consists of

several harmonised components which work together to
implement dependable computing in a simple way. The
network is built using basic building blocks called
middleware switches which implement different protocols to

different units and converts them to the internal
NetworkCentric protocol.

Different nodes, including computing nodes, mass
memory nodes, and devices may be attached to the network
using at least one link. The network switching points are
implemented by the Middleware Switch. The connection
links to the network may be redundant and in this case they
will be treated by the network as different independent
connections. Links may be of different types such as RS422,
MIL-1553, CAN, SpaceWire, SPI, I2C , etc. Each interface
from the network to a link is called a Synapse and each
synapse has to be adapted to the corresponding link in order
to support the corresponding protocol. The Synapses
translate the external link protocols to the NetworkCentric
publisher/subscriber protocol which is the “common
universal language” for all units in the system, including
software tasks and I/O devices. The Software middleware in
RODOS (the NetworkCentric Operating System) directly
supports this protocol. For all other units, translators have to
be provided, and this is the function of the synapses. All
synapses have the same structure but a different
implementation according to the attached inner network
centric protocol.

II.THE FIRST STEP TOWARD DEPENDABLE
COMPUTING

The first step to designing dependability for space
computers was first used in the (DLR-) BIRD satellite. In

this architecture there are two or four redundant control
computers, each of the nodes capable of executing all of the
control tasks. One node (the worker) controls the satellite
while a second node (supervisor) supervises the correct
operation of the worker node. If an anomaly of the worker
node is detected by the supervisor node, the supervisor takes
over the control of the satellite and becomes the new worker
node. The old worker node is enforced to execute a recovery
function and if there is no permanent error detected, it then
becomes the supervisor node.

Figure 3: Merging software and hardware in the Middleware

The core avionics system becomes a distributed computer

system through which no single node is required to be
dependable. The nodes are instead connected through a
dependable network which is the heart of the system.
Software services can then be distributed on all computer
nodes and may migrate from one node to another in the case
of node-failures, overloading or for power management
purposes. In this way it is possible to compose a reliable
system out of unreliable parts. The network is based on a
publisher/subscriber protocol which is implemented in a
software middleware for the software tasks, and in a FPGA
as a middleware switch for hardware devices and to
interconnect computing nodes and mass memories.

III.INTEGRATED SOFTWARE AND HARDWARE
STRUCTURES

The next step to improving this structure was a software-
only step. While the hardware structure stayed the same, the
software structure was improved by adding a middleware for
communication purposes. Instead of having many different
interfaces among applications or between application and
I/O-drivers, there is only one interface for all
communications in the system. The middleware provides a
message-interface which can be used to interchange data
among all entities in the system. Therefore there is no extra

I/O- driver interface. I/O-devices are controlled by
applications called I/O-managers.

Another improvement is the inter-node communication.
The functionality of the system is implemented as a network
of applications which can be distributed among many
computers in the system (Figure 1).

Figure 2: Typical data/control flow from devices to applications

Computing units (CPU +MEM) are managed by the local
real-time kernel operating system (OS) RODOS. On top of
the kernel runs the software middleware (MW) of RODOS
and around this middleware the user can implement its
applications (AP). To communicate with external units,
including devices and other computing units, each node
provides a gateway to the network and around the network
several devices (IO Devs and computing nodes) may be

attached to the system.

IV.THE MIDDLEWARE SWITCH

A. Middleware architecture
The next step is to unify software and hardware into an

integrated architecture. Figure 2 shows a typical data/control
flow to access I/O-devices.

The capabilities of the FPGA (programmable hardware)
emerging technology allows the implementation of
middleware functionality directly into the hardware I/O-
interface of a structure such as that depicted in Figure 3. The
intention is to implement the middleware in the form of an
Application Specific Integrated Circuit (ASIC).

The I/O interface (typically a UART) will have on one

side the required device interface while on the other side it
will be directly integrated into the middleware protocol. In
this way the structure in figure 2 can be extended to simulate
the structure depicted in figure 4.

An embedded controller in the middleware switch
recognizes communication requests from the I/O ports and
connects/disconnects the ports accordingly. For cost-
sensitive applications an investigation will be carried out into
how the hardware management of I/O links can be done
automatically without the need of software-controlled
embedded processing resources.

V. RODOS
The RODOS real-time kernel and middleware provide an
integrated Object-oriented (OO) framework interface to
multitasking resources management and to the
NetworkCentric communication infrastructure. The RODOS
framework seeks to offer the simplest and smallest possible
interface to user applications, while still providing all the
required functionality and flexibility. It includes time
management, CPU and memory management.

Simplicity does not mean, however, lack of functionality.
Real time scheduling, resource management,
synchronization, middleware and simple communication
and all the functions expected from a microkernel are
implemented – just as simply as possible. An important
RODOS design target is the irreducible complexity; this is
the minimal possible complexity for a determined function -
when it becomes no longer possible to implement it simpler
without destroying the core functionality.

RODOS is based on utilising very few and simple basic
functions. Applications running on top of RODOS are
implemented using object-oriented technology, resulting in
highly modular application software. Applications running
on the top of the RODOS middleware are built using the
schema of software building blocks. Several (simple)

Figure 4: I/O-interfaces integrated in the Middleware

building blocks (called applications) can be distributed and
interconnected in a computer+devices network using the
NetworkCentric core avionics protocols thus building more
complex functionality. Building blocks can be implemented
and tested independently of each other and can be
interchanged without having to modify other blocks or
interfaces.

RODOS can be executed on embedded target hardware and
on top of Linux. Applications can be moved from one host
to another without modifications. The on-top-of-LINUX
implementation helps developers to work locally on their
workstation without having to use the target system. To
move to the target, they have only to recompile the code.
The behaviour is the same, except for timing requirements
and time resolution, which on LINUX cannot be as exact as
in the target systems.

Applications may be implemented by creating active and
passive objects. Active objects may get CPU-time from the
underlying core as reaction to time, to events, to message
distribution and to requests from the object itself. To create
an active object the user just needs to inherit and instantiate
from the interface classes Thread, Event and/or instantiate
Subscriber (Middleware Interface) objects.

The central element in the core is the time. The time begins
at 0 (boot time) and increments continuously in nanosecond
steps until “End-Of-Time” is reached which is about 150
years in the future. This time control controls almost all
activities in the core.

Many threads may run (apparently) simultaneously. Each
thread may run until it is suspended for a time period by
itself (typically) or by another thread (not usual). To
suspend a thread one may call explicitly the suspend()
method, or access a synchronised object which may suspend
its caller. Examples are entering a semaphore, reading from
synchronised fifos, waiting for Messages, etc. Such
synchronised objects just call the suspend() method of the
caller if it has to be blocked.

To build a complex functionality and even many different
functionalities in the same system, which is typical in
satellite systems, it is advisable to encapsulate simple and
clear-cut related functions in building blocks – here called
applications – and to plug such blocks together thereby
building a network of applications/building blocks (not to be
confused with the hardware network). Adding devices to the
network we get a network of services.

Applications (or building blocks) may encapsulate threads,
messages, event handlers, passive objects etc. From outside
it shall not be visible to the innermost being of the
application. The only interfaces to an application are
messages which can be distributed/subscribed. Each
application shall provide one specific service to the system.

A services network may be extended (or modified) to
provide more functionality without having to modify the
individual building blocks. For example we may add
instrumentation for debugging and a data logger by just
adding new building blocks to the network.

To build fault tolerance, both producers and consumers of
services may be replicated. For the programmer there is no
difference if one or more replicas are working in the same
network. To merge outputs from several sources we need
voters which may intercept messages, select the most
probable correct one and forward it to the device. Even
voters may be replicated.

CONCLUSIONS
This paper describes a minimalitic operating system and
middleware which has been developed to support the
network centric protocols which are the most simple
implementation of the publisher / subscriber protocol
imaginable. This protocols are similar to the DDS protocols
but much simpler.

The fault tolerant capability of the system in real-time
simulations , as well as the interface to programmers, have
been shown to be very simple and easy to use. The levitator
demonstrator is currently in development.

RELATED WORK
This work was inspired by the DDS protocol which
implements a similar functionality in the most simple
possible way to be used in very small embedded systems
and to be ported to different systems. Another inspiration is
the AFDX, a Real-Time protocol for Ethernet.

REFERENCES
[1] Sergio Montenegro and Lutz Dittrich, Network Centric Core

Avionics,7th Symposium on Small Satellites for Earth Observation,
May 04 - 08, 2009, Berlin, Germany

[2] Sergio Montenegro and Frank Dannemann, The software architecture
for TET and AsteroidFinder satellites, 7th Symposium on Small
Satellites for Earth Observation, May 04 - 08, 2009, Berlin, Germany

[3] Francisco Afonso, Carlos Silva, Adriano Tavares, and Sergio
Montenegro, Application-Level Fault Tolerance in Real-Time
Embedded Systems, Third International Symposium on Industrial
Embedded Systems, 11 - 13 June 2008, Montpellier France

[4] Francisco Afonso, Carlos Silva, Nuno Brito, Sergio Montenegro, and
Adriano Tavares, Aspect-Oriented Fault Tolerance for Real-Time
Embedded Systems, 7th Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS '08), 31st March 2008,
Brussels, Belgium

[5] Sergio Montenegro and Lutz Dittrich, The Core Avionics System for
the DLR Compact-Satellite Series, Small Satellites Systems and
Services The 4S Symposium, 26 - 30 May 2008, Rhodes, Greece

[6] Sergio Montenegro and Raffaele Vitulli, An unusual Approach to
Dependability for Space SWApplications, DASIA 2007 DAta
Systems In A erospace EUROSPACE, 29th May - 1st June 2007,
Naples, Italy

[7] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:
University Science, 1989.

	I. Introduction
	II. The First step toward dependable computing
	Integrated software and hardware structures
	IV. The Middleware Switch
	A. Middleware architecture

	V. RODOS
	CONCLUSIONS
	RELATED WORK
	REFERENCES

