
A Fault-Tolerant Middleware Switch for Space Applications

Sergio Montenegro
Institute of Space Systems

German Aerospace Agency (DLR)
Bremen, Germany

e-mail: sergio.montenegro@dlr.de

Ebrahim Haririan
Institute of Space Systems

German Aerospace Agency (DLR)
Bremen, Germany

e-mail: ebrahim.haririan@dlr.de

Abstract— Typical data systems for space applications
are computer-centric. The central component is a
computer to which several devices are attached. The
computer handles devices, communication, computation
and storage of data. Furthermore, fault-tolerance is an
important issue in space systems.

This paper presents a novel multicast embedded
middleware switch which at the first implementation is
fully implemented on an FPGA. SRAM-based FPGAs
are very susceptible to SEUs stemmed from radiation
effects in space, therefore considering fault-tolerance is
inevitable. High capability of this switch to handle
different interfaces in form of an integrated single system
together with its fault-tolerance feature makes it very
suitable for space data handling applications.

Keywords: FPGA, SEU, fault-tolerance, middleware

switch, TMR, EDAC

I. INTRODUCTION
SRAM-based FPGAs (Field Programmable Gate Arrays)

are very susceptible to SEUs (Single-Event Upsets) stemmed
from radiation effects in space applications. Considering
reliability as a key to success in space missions, need for
fault-tolerant design is inevitable. To apply fault tolerance to
an embedded multicast switch soft core, a design-level TMR
(Triple Module Redundancy) approach was chosen despite
its more power consumption and impacts in timing and area.

Due to high increase of area with TMR, a thrifty fault-
tolerant (thriFTy) method was applied into the switch core to
minimize fault-tolerance overhead. The major concerns in
this method are the memory modules, FFs (Flip-Flops) and
consequently FSMs (Finite State Machines).

Every flip-flop of the system is replicated and voted
according to the TMR approach. This includes all registers
and state machines. To implement TMR state machines,
states require an explicit encoding scheme. Different state
encoding schemes are studied to best fit the requirements of
the targeted middleware core, to make it radiation-hardened
up to a reasonable level of reliability.

Memory modules are protected against SEUs by means
of EDAC (Error Detection And Correction) codes. Error
detection and correction is applied to highly-reliable and
high-performance applications. The algorithm employed for
error detection and correction in the MWS (Middleware
Switch) core is the Hamming code. It detects double bit

errors and corrects single bit errors anywhere within the
memory.

Since data path and routing information are stored in the
configuration memory of FPGAs, scrubbing the
configuration memory is proposed by the thriFTy method
instead of replication of the data path. The thrifty fault-
tolerant method, presents more reasonable efficiency results
in words of resource usage and maximum frequency of the
system, compared to full replication method.

Section II gives a thorough overview on the system under
development – the MWS (Middleware Switch) core – in
detail. As the first implementation of the MWS core is on
FPGAs, radiation effects on FPGAs will be discussed in
section III. The paper follows representing fault-tolerance
applied to the MWS core in section IV.

At the end, a comparison between the non-FT and thrifty
fault-tolerant design represents a moderate increase of
resources usage and less decrease of the maximum frequency
of the switch logic circuit, compared to the fully replicated
approaches.

II. MIDDLEWARE SWITCH

A. Core Avionic Systems
The term ‘core avionic system’ in this context is referred

to a special avionic system with a computer as an integral
part of the system. This on-board computer performs the
whole control of the satellite. Typically this is divided into
some subtasks including command handling, data handling,
time management, system health monitoring, attitude
control, onboard navigation and power and thermal
management [3].

Health monitoring is the supervision of all systems and
subsystems. An important aspect of health monitoring is
memory scrubbing to prevent the accumulation of bit-flips
induced by single-event effects.

The data management system on board is similar to many
other terrestrial embedded systems but in space, there are
very strict constraints and difficulties. Reliability is a very
important issue for space applications. This property is
extremely important for the data management systems and is
the main cause for its high costs in comparison to terrestrial
embedded systems.

One of the important aspects of reliability is fault-
tolerance. Even if the components are not permanently
damaged, malfunctions are to be expected in any engineering

system. The system must be able to recognize such
anomalies to correct them before they have wider
consequences. On the ground, similar requirements can be
found in case of safety-critical systems. Railway, airplane or
nuclear reactor control systems are of those examples.
Whereas ground applications are protected very well against
the cosmic radiation, the core avionic systems, however, are
not. This radiation causes a huge amount of data corruptions
(bit flips) that leads to quicker ageing of the electronic
components in such applications.

B. A Middleware Switch as a Core Avionic System
In 2007, the German Aerospace Center (DLR) planned to

develop and operate a DLR-owned Standard Satellite Bus
(SSB) suitable for different types of missions and
applications. SSB aims to provide necessary facilities for
satellite development and satellite operations. The program is
in continue of other DLR projects framework referred as the
Compact Class describing satellites of approximately 100kg
overall mass and dimensions, which allow piggy-back
launches.

A dedicated project named Projekt Kompaktsatellit1 was
initiated within the DLR’s Institute of Space Systems for the
development and operation of the desired DLR’s standard
satellite bus. The Kompatksatellit project aims to develop a
Standard Satellite Bus called SSB which will be able to
handle different missions in the compact satellite class
defined above. A major step in this project, is to improve
dependability, flexibility and simplicity of the whole core
avionic system dealing with different aspects of core
avionics development to meet current and future
requirements regarding flexibility, availability and reliability
of small satellites.

The main factors in a typical avionic system development
are complexity, software-hardware interfaces and the
difficulties to handle different interfaces in a single system.
The new avionic concept targets these problems and aims to
provide a very simple integrated solution of software and
hardware, hiding the border between them.

The emerging and fast growing FPGA technology makes
it possible to implement the biggest part of the avionic
system in software, including classical CPU software and
FPGA software. The use of fixed hardware is kept to a
minimal limit. In this concept, the system’s functionality is
provided by a network of services. Some of these services
are implemented in classical CPU-software, some in FPGA-
software and some in hardware devices. To access any
service there is no difference in how it is implemented and
where it runs. The avionics system is a distributed computer
system. No single node is required to be dependable. The
computers are connected by a dependable hardware network
which is the heart of the system.

In the same way of the hardware network, there is a
software network, which interconnects all services, including
software tasks running on the same computer, on different
computers, FPGA programs and even hardware devices. This
global software interconnection network is called

1 Project Compact Satellite

‘Middleware’. The middleware is implemented in both CPU-
software and FPGA-software. Both implementations use the
same communication protocol. This allows to have only one
interface type in the whole system: the Middleware Interface.
This way, Instead of having many different interfaces, there
is only one interface for all communications in the system.

A brilliant idea was to unify software and hardware in an
integrated architecture [3]. Doing this, the architecture of the
new core avionics system consists of computing nodes, mass
memory, a diversity of different sensors and actuators and a
dependable multicast middleware switch. All computing
nodes, the mass-memory and the peripheral devices are
connected to each other via this middleware switch.

C. Architecture
The middleware switch is in fact a publish/subscribe

multicast bus. Each port provides a protocol translation layer
to connect a device with its own interface and protocol to the
middleware bus.

The capabilities of the FPGA emerging technology
allows to implement middleware functionality directly in the
hardware. The I/O interface - traditionally a UART - will
then have in one side the required device interface and in the
other side, it will be directly integrated to the middleware
protocol.

The Switch is designed to route messages from different
senders to several receivers. Up to 32 I/O ports (in the
current implementation) in the Middleware Switch enable
the switch to deal with many sender and receiver channels.
The I/O ports can support different protocols such as JTAG,
RS232, USB etc. Basically, it is a Publish/Subscribe
multicast switch to route messages from a sender channel to
as many receivers that are eligible to get data according to
their subscriber list being compared with the Topics list in
the message packet.

The message format designed for this architecture is
shown in Fig. 1. The maximum length considered for the
packet is 2KB. It starts with a 9-bit BOM field that refers to
the beginning of message. It continues with two other 9-bit
fields containing the list of Topics. Topics are special fields
to be compared with the receivers’ subscribers list for
delivering data to the relevant receiver(s).

The SenderID field is to recognize different senders. The
next field contains data to be sent through the switch. The
data length can be as much that the whole packet does not
exceed 2KB. The last field is called EOM representing the
end of the message.

The BOM and EOM fields have a separate fixed 9-bit
format. The first bit in each field (c/d) determines if the
message is a command or contains data. This criteria was
designed for packet synchronization. Each message can be
recognized with its BOM and EOM fields in the beginning
and end of the message respectively.

Figure 1: Message format of the MWS core

Fig. 2 shows an abstract block diagram of the MWS core.

Figure 2: MWS core

DataIn is a 9-bit input port to cover each 9-bit message
filed.

The MWS core consists of three main modules; Sender,
Arbiter and Receiver modules (Fig. 3).

Each module is explained as follows:
1) Sender Module

The Sender module (Fig. 4) is to get data from an input
port and deliver to the receiver(s) after checking if data is
valid. As different senders may be connected to the
Middleware Switch, the Arbiter module determines the
sender to be granted the bus. Different senders are
recognized with their SenderID field in the messages.

The Sender module contains different units. These units
check message availability, store data, request to get the data
bus from the Arbiter and read out data in case bus was given
to that Sender.

Figure 3: Design tree of the MW Switch core

Figure 4: Sender module of the MWS core

2) Arbiter module
The Arbiter module (Fig. 5) grants the bus to different

senders based on a round-robin scheme. Senders apply for
getting the bus with setting their Data Available (DataAv)
signal. Then the Arbiter decides constantly to give the bus to
the senders one by one.

After a selected sender puts data on the bus, the Arbiter
module distributes data among all receivers. That’s why this
switch is in the multicast switch categories. In the Receiver
module, only those receivers that already have subscribed to
receive data, will get the received messages. The desired data
is in the receivers Topics list.

Fig .5 shows the architecture of the Arbiter module of the
MWS core.

3) Receiver Module
All Receiver modules receive the same messages from

the Sender module. They check if the Topic fields of the
received messages match their Subscriber list, containing
topics they have subscribed before. If so, they put the
messages into their corresponding FIFO. Messages are read
out when the Read Enable (RD_EN) signal is set. Fig. 6
presents the Receiver module of the MWS core.

Figure 5: Arbiter module of the MWS core

Figure 6: Receiver module of the MWS core

D. Functionality
The MW switch, in its current implementation supports

up to 32 senders/receivers. Although each time only one
sender is granted the bus, messages are published among all
the receivers. The switch acts in a Publish/Subscribe
manner. It means that the receivers may accept or ignore the
arrived messages according to their interest to the received
message. This interest is based on their prior subscription to
receive desired messages. These message topics are stored
in an exclusive Topics List in each sender. When a receiver
receives a message, it compares the Topics field of the
message with its SubscriberID list. The receiver accepts a
message only if a match occurs in this comparison.

For a detailed functionality overview, let’s assume that a
message packet arrives in the DataIn port of the Sender. In
each clock cycle, a 9-bit data enters the Sender module. The
PacketChk unit of the Sender module checks if the data is
ready and if so, sets DataAv signal. When WriteRequest
signal is on, WrSENDbuffer unit generates Wr_EN signal to
let data go into the FIFO and be queued there.

DataAv signal set by PacketChk together with
ReadEnableCh signal coming from the Arbiter module,
cause RdSENDbuffer unit, send out RD_EN signal to let
data inside FIFO, come out and pass through the
RdSENDbuffer unit to go to the next module.

The next module is BusArbiter32 – a unit to grant the
bus to one of the senders according to a round-robin
scheme. Up to 32 senders are able to request for the bus.
The bus is given to a sender if its DataAv signal is set. This
happens with a counter in BusGrantUnit32 unit in
collaboration with a state machine in ArbiterControl32 unit.
When bus is granted to a sender, ArbiterControl32 unit sets
the relevant ReadEnableCh signal for that sender. This
signal is the one that goes to the RdSENDbuffer unit in
Sender module mentioned before, to let data come out of
that Sender.

As only one sender’s data is to be let go through the
Arbiter module to the relevant receiver, data coming from
the eligible sender should be selected. This comes true via
the gMUX unit. It allows only data coming from one sender
determined by the ArbiterControl32 unit, to be distributed
among the receivers. gDMUX is responsible for distribution
of the selected data into the receivers.

All receivers receive data and compare it with a list of
topics (at the moment is a fixed 10 numbers of 16-bit topics).
If data matches with one of these topics, it is saved in the

FIFO. The saved data could be sent out when the RD_EN
signal is set by the RdRECbuffer unit. RdRECbuffer unit
generates this signal when its ReadRequest input signal is
set. Also a DataAv signal comes out of the receiver when
data is ready in the FIFO to go out.

The middleware switch, at its first implementation is
fully implemented on an FPGA. SRAM-based FPGAs are
very susceptible to SEUs in space applications. This is
discussed in more detail in section III. Robustness is a key to
success in space missions therefore need for fault-tolerant
design is inevitable. Section IV is dedicated to the fault-
tolerant implementation of the MWS core.

III. RADIATION EFEFCTS ON FPGAS
As the MW Switch implemented in FPGAs will be used

in satellite systems, a special care on radiation effects in
space should be emphasised.

Electronic components can be damaged in the space
environment through single-event effects (SEE). Space
environment possesses high energy electrons, protons and
heavy ions due to cosmic rays and other natural radiation
resources. These particles may cause damaging effects on
electronic components.

Radiation in space environment makes space applications
different than terrestrial systems. Radiation can cause bit
flips (upsets) in memory modules and hence failure in
semiconductor devices. Therefore high-reliability plays an
important role in such systems.

Reprogrammable logic chips do support reconfiguration
feature. The use of reconfiguration in space applications
allows designers to apply changes and update on-board
hardware by replacing faulty designs with correct data.
Moreover, it is useful to take advantage of developing and
debugging the hardware on ordinary FPGAs and applying
necessary modifications in the design as much as needed.

Re-programmable devices make it possible to implement
different tasks in a single chip instead of putting them into
different dedicated parts. This feature causes a reduction of
overall system power as well as the area. This high level of
integration and flexibility shows the high potential of
reprogrammable FPGAs and makes them very suitable for
space applications.

A. Radiation and SEUs
Logic circuits in turbulent environments may encounter

the following problems [4]:
• Single-Event Upsets (SEU) or bit flips in memory or

flip-flops, known as soft errors as well. If SEUs put
the circuit into an undefined state, a Single-Event
Functional Interrupts (SEFI) may happen.

• Single-Event Latchup (SEL) which is shorted
junctions inside a semiconductor.

• Single-Event Transient (SET) is a transient signal
inside the circuit.

This paper covers only SEU effects on the MWS
implemented on an FPGA. FPGAs as semiconductor devices
are very susceptible to Single Event Upsets. There are
different approaches to handle SEUs in digital logic. As
mentioned above, SEUs affect the registers and memory

http://en.wikipedia.org/wiki/Single-event_upset

elements. The paper addresses the sequential logic parts of
the MWS core to make these parts tolerable against Single
Event Upsets.

The functionality information of an FPGA is stored in
memory cells. Also the internal connections of the FPGA are
based on data stored in SRAM cells or so called Look-Up
Tables of FPGAs. An upset in these memory cells could
cause the device to malfunction. For this reason SEUs are a
major cause of concern.

The probability of having multiple errors within one
clock cycle is low [1] thus considering only single events
does not hurt the reliability issue in the targeted MWS core.
Here follows an overview of SEU mitigation approaches for
sequential logic on FPGAs.

B. SEU Mittigation Techniques
Mitigation techniques against SEUs on FPGAs could be

applied in physical level, system level and logic level.
Physical techniques include several methods such as
shielding the package against radiation, choosing special
substrate which gives higher tolerance to faults or special
considerations in manufacturing step.

Highly dependable space systems are good examples for
applying radiation protection with design techniques where
the existing protection in physical level is not enough. A
dependable design should accept SEUs, correct them and
reconfigure the affected circuit part automatically. All these
activities should happen without affecting the behavior of the
overall system.

For protection in system level, a common SEU
mitigation technique is to apply Triple Modular Redundancy
(TMR). TMR brings tolerance against faults using redundant
components in system level together with a voter circuit to
perform votes among redundant systems. This concept can
also be implemented by replicating the logic in the design. A
single bit may be replaced with three bits and a separate
voting logic for each bit to determine its result in each clock
cycle. Furthermore, error detection and correction codes
(EDACs) can be used to check for errors in memory
modules. Reading out the data, checking for errors and
writing back corrected data into memory can be another
suitable method to prevent damages in memory contents.

In logic level TMR approach, each flip-flop is replicated
three times and voted by a majority voter to determine the
true state of that flip-flop. TMR can be applied to a complete
design or even to part of it.

A thorough overview about applying TMR method on
FPGAs is presented in [2]. The problem with this approach is
its more power consumption due to redundancy together
with its impacts on the circuit timing. Moreover, it only
covers the registers and does not cover multiple upsets
protection. Furthermore, the effects of SEUs are not limited
to flip-flops. Combinatorial logic is also sensible to SEUs for
which there are several protection schemes proposed.

Several EDAC methods are also available that can be
used for SEU protection as a complement to TMR. These
methods are specially useful to protect on-chip memory
modules from probable upsets.

IV. FAULT-TOLERANT MIDDLEWARE SWITCH
This section is about fault-tolerant implementation of the

embedded Middleware Switch core on an FPGA. In section
II, the architecture and functionality of the MWS core was
explained in detail. As mentioned before, fault-tolerance
plays an important role in space applications. The
Middleware Switch core is supposed to be radiation-
hardened so that it keeps working properly even in case
SEUs would happen. The following parts cover the methods
employed to achieve this goal.

Fault-tolerance in general is to make the system to
operate satisfactorily in erroneous conditions. In case of
space systems, the erroneous conditions arise due to the
radiation and is ought to be mitigated in a right way. An
important point here is to focus on the ‘right way’ statement
to achieve this goal. By this statement, we mean to determine
the level of fault-tolerance needed for the system as well as a
suitable technique to apply fault-tolerance to the system.

The degree of fault-tolerance is determined by the system
requirements [1]. It is the expected behaviour of the system
upon presence of faults that defines this level. For instance, it
should be cleared that if the errors in the system, are only to
be detected or corrected as well. Or for another example, it
should be noted that if the system is susceptible to more than
one error per clock cycle. This kind of questions, refers
directly to the system specifications. While considering these
specifications, it is possible to decide on the degree of fault-
tolerance that the system needs to be equipped.

After determining the required level of fault-tolerance,
it’s time to find a suitable tolerance technique against faults.
This technique is correlated to the corresponding level of
fault-tolerance.

Soft-error mitigation techniques usually address only the
latches within the circuit. For the MWS core, a thrifty fault-
tolerance method is applied. The thrifty fault-tolerant method
targets only the parts with major concerns to be mitigated
against SEUs. These major concerns are the memory
modules, FFs and consequently FSMs.

The thrifty fault-tolerance is different than that discussed
in [17]. Here, thrifty means the tolerance has been applied
only to the parts with major concerns saving used resources
and area, causing minimal timing effects and offering a
reasonable level of fault-tolerance.

The first implementation of the MWS core is fully on an
FPGA. In SRAM-based FPGAs the routing information is
saved in the configuration memory of the FPGAs. To make
sure that there is no more than one upset in the FPGA at a
given time and correct it, configuration memory scrubbing
mechanism is employed [5]. This mechanism is described in
section IV part B.

The only remaining part is I/O ports. Considering that the
MW Switch core is designed as a soft core, to be connected
to other cores such as protocol converters, the I/O ports are
not of too much concern. Applying fault-tolerant techniques
to the selected modules mentioned above together with
configuration memory scrubbing as a complement provides a
reasonable level of fault-tolerance for the MWS core with
this thrifty approach.

http://en.wikipedia.org/wiki/Voting_logic

A. Memory Modules
One of the parts to be mitigated against SEUs is Memory

modules. The common mitigation technique for SEUs in
RAMs is by means of error detection and correction codes.

Error detection and correction is applied to many highly-
reliable and high- performance applications. A suitable
algorithm for error detection and correction is Hamming
code. It detects double bit errors and corrects single bit errors
anywhere within the system.

B. FSMs
State machines are generally used as controllers in logic

designs. A state machine constitutes of several FFs to hold
its current state value. This registered value is then fed back
into a prior state and forms a registered logic loop to control
the sequence of digital logic. Therefore if there would be a
fault in the current state, the next state would be faulty too.
Such a sequential logic is to be replicated for fault-tolerance.
In the thriFTy method applied to the MWS core, replication
of the FSMs is managed with TMR method.

As mentioned above, state machines are typically used in
controller units of logic designs. In case an error happens in a
state machine the whole design may malfunction.

1) TMR and State Encoding
To implement TMR in state machines, an explicit

encoding scheme is required (Fig. 7). The type of encoding
determines the susceptibility of the state machine to radiation
[12].

The idea behind the state machine encoding is to assign
codes to the states which are represented symbolically, to be
able to present them in a register. This way, each state is
recognized with its assigned code. Researches [12] show that
Hamming-3 encoding has the best tolerance against faults,
showing no errors in fault injection tests. In Hamming-3
encoding, states are different by 3 bits. Thus, three bits
should be changed in any state in order for the state machine,
to malfunction. But in change, it requires the most resources,
and is the slowest compared to other common encoding
methods. Hamming-2 encoding (states are different in 2 bits)
has less errors than binary or one-hot encodings that are two
other alternatives (Fig. 7).

Figure 7: Sample state machine with Hamming-2 state encoding

Hamming-2 seems to be the best choice for fault tolerant
designs in terms of size and speed [12]. Hamming-3
encoding could be considered for those applications that
require very high reliability. For state machines with a large
number of states, a Hamming-n state encoding forces a big
redundancy to the switch core. Following the thrifty policy
of the thriFTy method, for mitigation of the state machines,
Triple Module Redundancy (TMR) method with One-hot
state encoding is preferred.

2) Automated TMR
The basic concept of TMR is that a fault-sensitive

component can be hardened to SEUs by implementing three
copies of the same component and performing a bit-wise
majority voter on the output of the triplicate circuit. This
component can be a single flip-flop or a logic circuit. The
function of the majority voter is to output the logic value that
corresponds to the majority (at least two) of its inputs.

Several projects have shown that implementing TMR
within FPGAs improve reliability. For example, TMR was
used on LEON3-FT [6]. A detailed description on using
TMR within the FPGAs can be found in [7].
Significant improvements in design reliability by applying
TMR have encouraged vendors to develop several tools for
automating the process. Xilinx TMRTool and Gaisler’s
FTMR are of those cases [8][9]. Although effectiveness of
TMR circuits produced by these tools has been verified in
radiation and with fault injection [10], there are some
discussions on easiness or generalization of using these
tools to design fault-tolerant circuits. Gaisler’s Research
technical report [9] states that FTMR’s increase in on-chip
resource usage for protection is a factor of between 4,5 and
7,5 for the demonstration application. Moreover, a
performance decrease of about 50%, could limit the
usability of that method.

3) TMR and Configuration Memory
Proper functionality of TMR in FPGAs depends on the

fact that there should be no more than one upset in the
configuration memory of an FPGA at each clock cycle. More
than one upset may cause the majority voters to malfunction.
To avoid this, configuration memory scrubbing is employed
to periodically remove upsets stemmed from the radiation
environment. Scrubbing is repeatedly correcting upsets in the
configuration memory of an FPGA. Several methods have
been suggested for doing this [11]. If scrubbing process
would be done fast enough it can ensure that there would be
no more than one upset in the FPGA’s configuration memory
at a given time.

4) TMR and the Synthesis Problem
After validation of the design behaviour, it should be

turned into an implementation in terms of logic gates. This
process is called Logic Synthesis. One important aspect of
synthesis tools is logic optimization in words of area and
timing. To optimize the design, synthesis algorithms may
remove the replicated parts added into the design for fault-
tolerance. Therefore, the purpose is to ensure that intentional
replications (result of tripled FFs) are not removed by the
synthesis tool in optimization process.

For this, one way is to apply necessary directives in the
synthesis tool for preserving redundant logic. Although this
seems to work, the MWS core is to be designed as a soft
core. That means it should be independent of the synthesis
tools to be synthesized in any FPGA or ASIC in future. To
achieve this goal, the state variable of the FFs were put into
a(n) array/vector with three cells to accommodate three
redundant copies of the same value as required for TMR
(Fig. 8).
This way, the synthesis tool considers each cell of the array
as a separate state and does not realize the repeated states as
redundant values.

5) TMR Voter Implementation
To implement a majority voter in FPGAs, there are two

options. One way is to use Look-Up Tables (LUTs) that are
logic resources to implement any boolean function inside
FPGAs. An alternative is dedicated hardware resources
available in FPGAs. For instance, Xilinx offers internal 3-
state buffers in its Virtex series (Virtex library primitive
BUFT). These dedicated resources are useful when the
available logic resources are limited. Implementing the voter
logic by means of dedicated resources saves area used in the
chip. For this reason, in the MW Switch core, the dedicated
hardware resources were chosen. The structure of a majority
voter circuit using the BUFT library primitive is presented in
[7].

C. Routing and Data Path
In FPGAs, logic paths are not hard-wired as in ASICs. Data
path and routing information are stored in configuration
memory of FPGAs. Configuration Memory Scrubbing
ensures that there will not be any SEU in the configuration
memory of an FPGA, so routing information are kept safe
and there is no need to apply replication to routing and data
path in the thrifty fault-tolerant approach applied to the
MWS core. During scrubbing, the design is not interrupted.
After scrubbing, a Readback process is recommended to
immediately follow to ensure that SEUs were corrected in
each clock cycle. Readback and scrubbing are mechanisms
to detect and correct SEUs in the configuration memory of
FPGAs without interrupting their operations.

Instead of replicating the routing paths, the thriFTy
method suggests the Configuration Memory Scrubbing for
SEU mitigation of the data path information in the MWS
core. Since the Configuration Memory Scrubbing does not
interrupt the functionality of the switch, timing effects are

Figure 8: Solution for the synthesis problem in the state replication

not matter of concern. [14] and [15] provide necessary
information regarding configuration and readback operations
in a sample Xilinx Virtex-4 device.

V. SIMULATION AND TEST
There are several techniques to evaluate SEU mitigation

approaches in FPGA designs. Common techniques are
Radiation Test , Fault Injection and Simulation of faults in
different subcomponents as well as the whole system.
Radiation Test is an accurate way of determining SEU
sensitivity of a design. In this technique, high-energy
particles are applied to the design to measure sensitivity of
the device to SEUs. Although this is an accurate method, it
is very expensive and time consuming too.

Another way of measuring SEU sensitivity is to inject
artificial upsets into different parts of the design. Studies
show a comparable result with radiation tests [16]. However,
it can not simulate upsets to the configuration logic itself
[13].

For the MW Switch core, a complete radiation test has
been planned before making it operational. Up to then, the
design is to be validated to ensure if the system
specifications are met. In the absence of faults, the
synthesized fault-tolerant core should behave similar to the
non-fault-tolerant one. Besides this, the behaviour of the
Switch core against intentional faults fed to different parts
was simulated and studied very carefully. Simulation results
showed that the fault-tolerant core is capable of handling
faults in different situations. Moreover, different post-
synthesis I/O tests have successfully proved the system
functionality, achieving expected results out of the applied
inputs.

Development of the MW Switch core is still ongoing,
adding further capabilities such as covering different
peripherals through a special translation layer. The FT
concept together with the introduced methods remains the
same and applicable to any further parts being added during
the whole development phase.

VI. RESULTS
Table I. provides a comparison between the FT and Non-

FT Switch core in terms of resource usage and maximum
frequency of the whole system predicted by the synthesizer.
The synthesis results shown in Table I. were achieved using
the Xilinx ISE development software. The prototype design
was implemented on a Xilinx Virtex-4 FX12 FPGA on
ML403 development board.

Furthermore, power consumption is a major issue for
space systems and should be carefully analyzed.

TABLE I. COMPARISON OF FT AND NON-FT MWS CORE

Logic
Utilization

Available Non-FT
version

FT
version

Change

Slice FFs 10944 1184 1663 +40.4%
LUTs 10944 2238 2809 +25.5%
FIFOs 36 16 16 0%
Max. freq -- 101.890MHz 73.659MHz - 27.7%

Table II. represents increase of power consumption after
applying fault-tolerance to the MWS core. It is necessary to
note that, power consumption analysis depends on the
different operation modes of a system. The results in Table
II. are based on considering active operating mode for the
most of the life cycle of the design (worst case). Lower time
considerations for the active operating mode gives less
increase in power consumption compared to the worst case
conditions.

TABLE II. POWER CONSUMPTION IN FT AND NON-FT MWS CORE

Power
Consumption

Non-FT
version

FT
version

Change

Static 12.72 mW 12.72 mW 0 mW
Dynamic 37.538 mW 90.118 mW 52.58 mW
Total 50.258 mW 102.838 mW 52.58 mW
Battery Life1 34.313 h 16.435 h -18.878 h

Compared to the full TMR method that in some cases,

causes a performance decrease of 50% [9], the fault-tolerant
MWS core, represents more reasonable results considering
resources usage and maximum frequency of the design.

REFERENCES

[1] Melanie Berg, A Simplified Approach to Fault Tolerant State

Machine, Design for Single Event Upsets, Ball Aerospace &
Technologies Corp.

[2] R. Katz et al., SEU Hardening of Field Programmable Gate Arrays
(FPGAs) For Space Applications and Device Characterization, 31st
Annual Nuclear and Space Radiation Effects Conference, 1994
NSREC, Tucson, USA

[3] Sergio Montenegro, Jan-Thimo Grundmann, Bobby Kazeminejad,
Peter Spietz, The new DLR Standard Satellite Bus series (SSB),
Small Satellites Systems and Services - The 4S Symposium, German
Aerospace Center, 2008

[4] Single Event Effects in Avionics, Boing Radiations Effect Lab., a
presentation by E. Normand to C17 Avionics group, Dec 1998

[5] Keith S. Morgan, Daniel L. McMurtrey, Brian H. Pratt, and Michael
J. Wirthlin, Fault-Tolerant Design Techniques for FPGAs, IEEE
transactions on nuclear science, 2007

[6] http://www.gaisler.com
[7] C. Carmichael, Triple Module Redundancy Design Techniques for

Virtex FPGA, ” Tech. Rep. Xilinx Corporation, 2001, vol. 1.0,
xAPP197

[8] Xilinx XTMR Tool Available at: http://www.xilinx.com
[9] Sandi Habinc, Functional Triple Modular Redundancy (FTMR),

Design and Assessment Report, Gaisler Research, 2002
[10] Keith S. Morgan, Daniel L. McMurtrey, Brian H. Pratt, and Michael

J. Wirthlin, A Comparison of TMR With Alternative Fault-Tolerant
Design Techniques for FPGAs, IEEE transactions on nuclear science,
2007

[11] C. Carmichael, M. Caffrey, and A. Salazar, Correcting Single-Event
Upsets Through Virtex Partial Configuration, Tech. Rep. Xilinx
Corporation, 2000, vol. 1.0, xAPP216

[12] Gary Burke and Stephanie Taft, Fault Tolerant State Machines, Jet
Propulsion Laboratory

1 This battery life was considered for a sample battery capacity of 1000
mAh

[13] Carl Carmichael, and Chen Wei Tseng, Correcting Single-Event
Upsets in Virtex-4 Platform FPGA Configuration Memory, Xilinx
Application Note XAPP988

[14] Virtex-4 FPGA Configuration User Guide UG071, Xilinx
Corporation

[15] Brendan Bridgford, Carl Carmichael, and Chen Wei Tseng, Single-
Event Upset Mitigation Selection Guide

[16] M. Rebaudengo, M. Sonza Reorda, M. Violante, Simulation-Based
Analysis of SEU Effects on SRAM-based FPGAs, FPL2002,
International Conference on Field Programmable Logic and
Application, 2002

[17] Praveen Kumar Samudrala, Jeremy Ramos, and Srinivas Katkoori,
Selective Triple Modular Redundancy for SEU Mitigation in FPGAs,
University of South Florida, Tampa, FL-Honeywell Space Systems
Inc., Clearwater, FL

http://www.gaisler.com/
http://www.xilinx.com/
http://www.cad.polito.it/FullDB/author/M.+Rebaudengo.html
http://www.cad.polito.it/FullDB/author/M.+Sonza+Reorda.html
http://www.cad.polito.it/FullDB/author/M.+Violante.html

	I. Introduction
	II. Middleware Switch
	A. Core Avionic Systems
	B. A Middleware Switch as a Core Avionic System
	C. Architecture
	1) Sender Module
	2) Arbiter module
	3) Receiver Module

	D. Functionality

	III. Radiation Efefcts on FPGAs
	A. Radiation and SEUs
	B. SEU Mittigation Techniques

	IV. Fault-Tolerant Middleware Switch
	1) TMR and State Encoding
	2) Automated TMR
	3) TMR and Configuration Memory
	4) TMR and the Synthesis Problem
	5) TMR Voter Implementation

	V. Simulation and Test
	VI. results
	References

