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Abstract— Typical data systems for space applications 
are computer-centric. The central component is a 
computer to which several devices are attached. The 
computer handles devices, communication, computation 
and storage of data. Furthermore, fault-tolerance is an 
important issue in space systems.   

This paper presents a novel multicast embedded 
middleware switch which at the first implementation is 
fully implemented on an FPGA. SRAM-based FPGAs 
are very susceptible to SEUs stemmed from radiation 
effects in space, therefore considering fault-tolerance is 
inevitable. High capability of this switch to handle 
different interfaces in form of an integrated single system 
together with its fault-tolerance feature makes it very 
suitable for space data handling applications.  
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I. INTRODUCTION  
SRAM-based FPGAs (Field Programmable Gate Arrays) 

are very susceptible to SEUs (Single-Event Upsets) stemmed 
from radiation effects in space applications. Considering 
reliability as a key to success in space missions, need for 
fault-tolerant design is inevitable. To apply fault tolerance to 
an embedded multicast switch soft core, a design-level TMR 
(Triple Module Redundancy) approach was chosen despite 
its more power consumption and impacts in timing and area. 

Due to high increase of area with TMR, a thrifty fault-
tolerant (thriFTy) method was applied into the switch core to 
minimize fault-tolerance overhead. The major concerns in 
this method are the memory modules, FFs (Flip-Flops) and 
consequently FSMs (Finite State Machines). 

Every flip-flop of the system is replicated and voted 
according to the TMR approach. This includes all registers 
and state machines. To implement TMR state machines, 
states require an explicit encoding scheme. Different state 
encoding schemes are studied to best fit the requirements of 
the targeted middleware core, to make it radiation-hardened 
up to a reasonable level of reliability. 

Memory modules are protected against SEUs by means 
of EDAC (Error Detection And Correction) codes. Error 
detection and correction is applied to highly-reliable and 
high-performance applications. The algorithm employed for 
error detection and correction in the MWS (Middleware 
Switch) core is the Hamming code. It detects double bit 

errors and corrects single bit errors anywhere within the 
memory.  

Since data path and routing information are stored in the 
configuration memory of FPGAs, scrubbing the 
configuration memory is proposed by the thriFTy method 
instead of replication of the data path. The thrifty fault-
tolerant method, presents more reasonable efficiency results 
in words of resource usage and maximum frequency of the 
system, compared to full replication method.  

Section II gives a thorough overview on the system under 
development – the MWS (Middleware Switch) core  – in 
detail. As the first implementation of the MWS core is on 
FPGAs, radiation effects on FPGAs will be discussed in 
section III. The paper follows representing fault-tolerance 
applied to the MWS core in section IV.   

At the end, a comparison between the non-FT and thrifty 
fault-tolerant design represents a moderate increase of 
resources usage and less decrease of the maximum frequency 
of the switch logic circuit, compared to the fully replicated 
approaches. 

II. MIDDLEWARE SWITCH 

A. Core Avionic Systems 
The term ‘core avionic system’ in this context is referred 

to a special avionic system with a computer as an integral 
part of the system. This on-board computer performs the 
whole control of the satellite. Typically this is divided into 
some subtasks including command handling, data handling, 
time management, system health monitoring, attitude 
control, onboard navigation and power and thermal 
management [3]. 

Health monitoring is the supervision of all systems and 
subsystems. An important aspect of health monitoring is 
memory scrubbing to prevent the accumulation of bit-flips 
induced by single-event effects.  

The data management system on board is similar to many 
other terrestrial embedded systems but in space, there are 
very strict constraints and difficulties. Reliability is a very 
important issue for space applications. This property is 
extremely important for the data management systems and is 
the main cause for its high costs in comparison to terrestrial 
embedded systems.  

One of the important aspects of reliability is fault-
tolerance. Even if the components are not permanently 
damaged, malfunctions are to be expected in any engineering 



system. The system must be able to recognize such 
anomalies to correct them before they have wider 
consequences. On the ground, similar requirements can be 
found in case of safety-critical systems. Railway, airplane or 
nuclear reactor control systems are of those examples. 
Whereas ground applications are protected very well against 
the cosmic radiation, the core avionic systems, however, are 
not. This radiation causes a huge amount of data corruptions 
(bit flips) that leads to quicker ageing of the electronic 
components in such applications.  

B. A Middleware Switch as a Core Avionic System 
In 2007, the German Aerospace Center (DLR) planned to 

develop and operate a DLR-owned Standard Satellite Bus 
(SSB) suitable for different types of missions and 
applications. SSB aims to provide necessary facilities for 
satellite development and satellite operations. The program is 
in continue of other DLR projects framework referred as the 
Compact Class describing satellites of approximately 100kg 
overall mass and dimensions, which allow piggy-back 
launches. 

A dedicated project named Projekt Kompaktsatellit1 was 
initiated within the DLR’s Institute of Space Systems for the 
development and operation of the desired DLR’s standard 
satellite bus. The Kompatksatellit project aims to develop a 
Standard Satellite Bus called SSB which will be able to 
handle different missions in the compact satellite class 
defined above. A major step in this project, is to improve 
dependability, flexibility and simplicity of the whole core 
avionic system dealing with different aspects of core 
avionics development to meet current and future 
requirements regarding flexibility, availability and reliability 
of small satellites. 

The main factors in a typical avionic system development 
are complexity, software-hardware interfaces and the 
difficulties to handle different interfaces in a single system. 
The new avionic concept targets these problems and aims to 
provide a very simple integrated solution of software and 
hardware, hiding the border between them.  

The emerging and fast growing FPGA technology makes 
it possible to implement the biggest part of the avionic 
system in software, including classical CPU software and 
FPGA software. The use of fixed hardware is kept to a 
minimal limit. In this concept, the system’s functionality is 
provided by a network of services. Some of these services 
are implemented in classical CPU-software, some in FPGA-
software and some in hardware devices. To access any 
service there is no difference in how it is implemented and 
where it runs. The avionics system is a distributed computer 
system. No single node is required to be dependable. The 
computers are connected by a dependable hardware network 
which is the heart of the system.  

In the same way of the hardware network, there is a 
software network, which interconnects all services, including 
software tasks running on the same computer, on different 
computers, FPGA programs and even hardware devices. This 
global software interconnection network is called 
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‘Middleware’. The middleware is implemented in both CPU-
software and FPGA-software. Both implementations use the 
same communication protocol. This allows to have only one 
interface type in the whole system: the Middleware Interface. 
This way, Instead of having many different interfaces, there 
is only one interface for all communications in the system.  

A brilliant idea was to unify software and hardware in an 
integrated architecture [3]. Doing this, the architecture of the 
new core avionics system consists of computing nodes, mass 
memory, a diversity of different sensors and actuators and a 
dependable multicast middleware switch. All computing 
nodes, the mass-memory and the peripheral devices are 
connected to each other via this middleware switch. 

C. Architecture 
The middleware switch is in fact a publish/subscribe 

multicast bus. Each port provides a protocol translation layer 
to connect a device with its own interface and protocol to the 
middleware bus. 

The capabilities of the FPGA emerging technology 
allows to implement middleware functionality directly in the 
hardware. The I/O interface - traditionally a UART - will 
then have in one side the required device interface and in the 
other side, it will be directly integrated to the middleware 
protocol.  

The Switch is designed to route messages from different 
senders to several receivers. Up to 32 I/O ports (in the 
current implementation) in the Middleware Switch enable 
the switch to deal with many sender and receiver channels. 
The I/O ports can support different protocols such as JTAG, 
RS232, USB etc. Basically, it is a Publish/Subscribe 
multicast switch to route messages from a sender channel to 
as many receivers that are eligible to get data according to 
their subscriber list being compared with the Topics list in 
the message packet. 

The message format designed for this architecture is 
shown in Fig. 1. The maximum length considered for the 
packet is 2KB. It starts with a 9-bit BOM field that refers to 
the beginning of message. It continues with two other 9-bit 
fields containing the list of Topics. Topics are special fields 
to be compared with the receivers’ subscribers list for 
delivering data to the relevant receiver(s).  

The SenderID field is to recognize different senders. The 
next field contains data to be sent through the switch. The 
data length can be as much that the whole packet does not 
exceed 2KB. The last field is called EOM representing the 
end of the message. 

The BOM and EOM fields have a separate fixed 9-bit 
format. The first bit in each field (c/d) determines if the 
message is a command or contains data. This criteria was 
designed for packet synchronization. Each message can be 
recognized with its BOM and EOM fields in the beginning 
and end of the message respectively.  

 

 
 

Figure 1: Message format of the MWS core 
 



Fig. 2 shows an abstract block diagram of the MWS core.  
 

 
Figure 2: MWS core 

DataIn is a 9-bit input port to cover each 9-bit message 
filed. 

The MWS core consists of three main modules; Sender, 
Arbiter and Receiver modules (Fig. 3).  

Each module is explained as follows: 
1) Sender Module 

The Sender module (Fig. 4) is to get data from an input 
port and deliver to the receiver(s) after checking if data is 
valid. As different senders may be connected to the 
Middleware Switch, the Arbiter module determines the 
sender to be granted the bus. Different senders are 
recognized with their SenderID field in the messages. 

The Sender module contains different units. These units 
check message availability, store data, request to get the data 
bus from the Arbiter and read out data in case bus was given 
to that Sender.  
 

 
Figure 3: Design tree of the MW Switch core 

 

 
Figure 4: Sender module of the MWS core 

2) Arbiter module 
The Arbiter module (Fig. 5) grants the bus to different 

senders based on a round-robin scheme. Senders apply for 
getting the bus with setting their Data Available (DataAv) 
signal. Then the Arbiter decides constantly to give the bus to 
the senders one by one.  

After a selected sender puts data on the bus, the Arbiter 
module distributes data among all receivers. That’s why this 
switch is in the multicast switch categories. In the Receiver 
module, only those receivers that already have subscribed to 
receive data, will get the received messages. The desired data 
is in the receivers Topics list. 

Fig .5 shows the architecture of the Arbiter module of the 
MWS core. 

3) Receiver Module 
All Receiver modules receive the same messages from 

the Sender module. They check if the Topic fields of the 
received messages match their Subscriber list, containing 
topics they have subscribed before. If so, they put the 
messages into their corresponding FIFO. Messages are read 
out when the Read Enable (RD_EN) signal is set. Fig. 6 
presents the Receiver module of the MWS core. 

 

 

Figure 5: Arbiter module of the MWS core 

 
 



  
 

Figure 6: Receiver module of the MWS core 

D. Functionality 
The MW switch, in its current implementation supports 

up to 32 senders/receivers. Although each time only one 
sender is granted the bus, messages are published among all 
the receivers. The switch acts in a Publish/Subscribe 
manner. It means that the receivers may accept or ignore the 
arrived messages according to their interest to the received 
message. This interest is based on their prior subscription to 
receive desired messages. These message topics are stored 
in an exclusive Topics List in each sender. When a receiver 
receives a message, it compares the Topics field of the 
message with its SubscriberID list. The receiver accepts a 
message only if a match occurs in this comparison. 

For a detailed functionality overview, let’s assume that a 
message packet arrives in the DataIn port of the Sender. In 
each clock cycle, a 9-bit data enters the Sender module. The 
PacketChk unit of the Sender module checks if the data is 
ready and if so, sets DataAv signal. When WriteRequest 
signal is on, WrSENDbuffer unit generates Wr_EN signal to 
let data go into the FIFO and be queued there. 

DataAv signal set by PacketChk together with 
ReadEnableCh signal coming from the Arbiter module, 
cause RdSENDbuffer unit, send out RD_EN signal to let 
data inside FIFO, come out and pass through the 
RdSENDbuffer unit to go to the next module. 

The next module is BusArbiter32 – a unit to grant the 
bus to one of the senders according to a round-robin 
scheme. Up to 32 senders are able to request for the bus. 
The bus is given to a sender if its DataAv signal is set. This 
happens with a counter in BusGrantUnit32 unit in 
collaboration with a state machine in ArbiterControl32 unit. 
When bus is granted to a sender, ArbiterControl32 unit sets 
the relevant ReadEnableCh signal for that sender. This 
signal is the one that goes to the RdSENDbuffer unit in 
Sender module mentioned before, to let data come out of 
that Sender. 

As only one sender’s data is to be let go through the 
Arbiter module to the relevant receiver, data coming from 
the eligible sender should be selected. This comes true via 
the gMUX unit. It allows only data coming from one sender 
determined by the ArbiterControl32 unit, to be distributed 
among the receivers. gDMUX is responsible for distribution 
of the selected data into the receivers. 

All receivers receive data and compare it with a list of 
topics (at the moment is a fixed 10 numbers of 16-bit topics). 
If data matches with one of these topics, it is saved in the 

FIFO. The saved data could be sent out when the RD_EN 
signal is set by the RdRECbuffer unit. RdRECbuffer unit 
generates this signal when its ReadRequest input signal is 
set. Also a DataAv signal comes out of the receiver when 
data is ready in the FIFO to go out. 

The middleware switch, at its first implementation is 
fully implemented on an FPGA. SRAM-based FPGAs are 
very susceptible to SEUs in space applications. This is 
discussed in more detail in section III. Robustness is a key to 
success in space missions therefore need for fault-tolerant 
design is inevitable. Section IV is dedicated to the fault-
tolerant implementation of the MWS core.  

III. RADIATION EFEFCTS ON FPGAS 
As the MW Switch implemented in FPGAs will be used 

in satellite systems, a special care on radiation effects in 
space should be emphasised.  

Electronic components can be damaged in the space 
environment through single-event effects (SEE). Space 
environment possesses high energy electrons, protons and 
heavy ions due to cosmic rays and other natural radiation 
resources. These particles may cause damaging effects on 
electronic components.  

Radiation in space environment makes space applications 
different than terrestrial systems. Radiation can cause bit 
flips (upsets) in memory modules and hence failure in 
semiconductor devices. Therefore high-reliability plays an 
important role in such systems. 

Reprogrammable logic chips do support reconfiguration 
feature. The use of reconfiguration in space applications 
allows designers to apply changes and update on-board 
hardware by replacing faulty designs with correct data. 
Moreover, it is useful to take advantage of developing and 
debugging the hardware on ordinary FPGAs and applying 
necessary modifications in the design as much as needed. 

Re-programmable devices make it possible to implement 
different tasks in a single chip instead of putting them into 
different dedicated parts. This feature causes a reduction of 
overall system power as well as the area. This high level of 
integration and flexibility shows the high potential of 
reprogrammable FPGAs and makes them very suitable for 
space applications. 

A. Radiation and SEUs 
Logic circuits in turbulent environments may encounter 

the following problems [4]: 
• Single-Event Upsets (SEU) or bit flips in memory or 

flip-flops, known as soft errors as well. If SEUs put 
the circuit into an undefined state, a Single-Event 
Functional Interrupts (SEFI) may happen.  

• Single-Event Latchup (SEL) which is shorted 
junctions inside a semiconductor. 

• Single-Event Transient (SET) is a transient signal 
inside the circuit. 

This paper covers only SEU effects on the MWS 
implemented on an FPGA. FPGAs as semiconductor devices 
are very susceptible to Single Event Upsets. There are 
different approaches to handle SEUs in digital logic. As 
mentioned above, SEUs affect the registers and memory 

http://en.wikipedia.org/wiki/Single-event_upset


elements. The paper addresses the sequential logic parts of 
the MWS core to make these parts tolerable against Single 
Event Upsets.  

The functionality information of an FPGA is stored in 
memory cells. Also the internal connections of the FPGA are 
based on data stored in SRAM cells or so called Look-Up 
Tables of FPGAs. An upset in these memory cells could 
cause the device to malfunction. For this reason SEUs are a 
major cause of concern. 

The probability of having multiple errors within one 
clock cycle is low [1] thus considering only single events 
does not hurt the reliability issue in the targeted MWS core. 
Here follows an overview of SEU mitigation approaches for 
sequential logic on FPGAs.  

B. SEU Mittigation Techniques 
Mitigation techniques against SEUs on FPGAs could be 

applied in physical level, system level and logic level.  
Physical techniques include several methods such as 
shielding the package against radiation, choosing special 
substrate which gives higher tolerance to faults or special 
considerations in manufacturing step. 

Highly dependable space systems are good examples for 
applying radiation protection with design techniques where 
the existing protection in physical level is not enough. A 
dependable design should accept SEUs, correct them and 
reconfigure the affected circuit part automatically. All these 
activities should happen without affecting the behavior of the 
overall system.  

For protection in system level, a common SEU 
mitigation technique is to apply Triple Modular Redundancy 
(TMR). TMR brings tolerance against faults using redundant 
components in system level together with a voter circuit to 
perform votes among redundant systems. This concept can 
also be implemented by replicating the logic in the design. A 
single bit may be replaced with three bits and a separate 
voting logic for each bit to determine its result in each clock 
cycle. Furthermore, error detection and correction codes 
(EDACs) can be used to check for errors in memory 
modules. Reading out the data, checking for errors and 
writing back corrected data into memory can be another 
suitable method to prevent damages in memory contents. 

In logic level TMR approach, each flip-flop is replicated 
three times and voted by a majority voter to determine the 
true state of that flip-flop. TMR can be applied to a complete 
design or even to part of it.  

A thorough overview about applying TMR method on 
FPGAs is presented in [2]. The problem with this approach is 
its more power consumption due to redundancy together 
with its impacts on the circuit timing. Moreover, it only 
covers the registers and does not cover multiple upsets 
protection. Furthermore, the effects of SEUs are not limited 
to flip-flops. Combinatorial logic is also sensible to SEUs for 
which there are several protection schemes proposed. 

Several EDAC methods are also available that can be 
used for SEU protection as a complement to TMR. These 
methods are specially useful to protect on-chip memory 
modules from probable upsets. 

IV. FAULT-TOLERANT MIDDLEWARE SWITCH 
This section is about fault-tolerant implementation of the 

embedded Middleware Switch core on an FPGA. In section 
II, the architecture and functionality of the MWS core was 
explained in detail. As mentioned before, fault-tolerance 
plays an important role in space applications. The 
Middleware Switch core is supposed to be radiation-
hardened so that it keeps working properly even in case 
SEUs would happen. The following parts cover the methods 
employed to achieve this goal.  

Fault-tolerance in general is to make the system to 
operate satisfactorily in erroneous conditions. In case of 
space systems, the erroneous conditions arise due to the 
radiation and is ought to be mitigated in a right way. An 
important point here is to focus on the ‘right way’ statement 
to achieve this goal. By this statement, we mean to determine 
the level of fault-tolerance needed for the system as well as a 
suitable technique to apply fault-tolerance to the system. 

The degree of fault-tolerance is determined by the system 
requirements [1]. It is the expected behaviour of the system 
upon presence of faults that defines this level. For instance, it 
should be cleared that if the errors in the system, are only to 
be detected or corrected as well. Or for another example, it 
should be noted that if the system is susceptible to more than 
one error per clock cycle. This kind of questions, refers 
directly to the system specifications. While considering these 
specifications, it is possible to decide on the degree of fault-
tolerance that the system needs to be equipped.  

After determining the required level of fault-tolerance, 
it’s time to find a suitable tolerance technique against faults. 
This technique is correlated to the corresponding level of 
fault-tolerance.  

Soft-error mitigation techniques usually address only the 
latches within the circuit. For the MWS core, a thrifty fault-
tolerance method is applied. The thrifty fault-tolerant method 
targets only the parts with major concerns to be mitigated 
against SEUs. These major concerns are the memory 
modules, FFs and consequently FSMs. 

The thrifty fault-tolerance is different than that discussed 
in [17]. Here, thrifty means the tolerance has been applied 
only to the parts with major concerns saving used resources 
and area, causing minimal timing effects and offering a 
reasonable level of fault-tolerance.  

The first implementation of the MWS core is fully on an 
FPGA. In SRAM-based FPGAs the routing information is 
saved in the configuration memory of the FPGAs. To make 
sure that there is no more than one upset in the FPGA at a 
given time and correct it, configuration memory scrubbing 
mechanism is employed [5]. This mechanism is described in 
section IV part B. 

The only remaining part is I/O ports. Considering that the 
MW Switch core is designed as a soft core, to be connected 
to other cores such as protocol converters, the I/O ports are 
not of too much concern. Applying fault-tolerant techniques 
to the selected modules mentioned above together with 
configuration memory scrubbing as a complement provides a 
reasonable level of fault-tolerance for the MWS core with 
this thrifty approach. 

http://en.wikipedia.org/wiki/Voting_logic


A. Memory Modules 
One of the parts to be mitigated against SEUs is Memory 

modules. The common mitigation technique for SEUs in 
RAMs is by means of error detection and correction codes. 

Error detection and correction is applied to many highly-
reliable and high- performance applications. A suitable 
algorithm for error detection and correction is Hamming 
code. It detects double bit errors and corrects single bit errors 
anywhere within the system.  

B. FSMs 
State machines are generally used as controllers in logic 

designs. A state machine constitutes of several FFs to hold 
its current state value. This registered value is then fed back 
into a prior state and forms a registered logic loop to control 
the sequence of digital logic. Therefore if there would be a 
fault in the current state, the next state would be faulty too. 
Such a sequential logic is to be replicated for fault-tolerance. 
In the thriFTy method applied to the MWS core, replication 
of the FSMs is managed with TMR method.  

As mentioned above, state machines are typically used in 
controller units of logic designs. In case an error happens in a 
state machine the whole design may malfunction.  

1) TMR and State Encoding 
To implement TMR in state machines, an explicit 

encoding scheme is required (Fig. 7). The type of encoding 
determines the susceptibility of the state machine to radiation 
[12]. 

The idea behind the state machine encoding is to assign 
codes to the states which are represented symbolically, to be 
able to present them in a register. This way, each state is 
recognized with its assigned code. Researches [12] show that 
Hamming-3 encoding has the best tolerance against faults, 
showing no errors in fault injection tests. In Hamming-3 
encoding, states are different by 3 bits. Thus, three bits 
should be changed in any state in order for the state machine, 
to malfunction. But in change, it requires the most resources, 
and is the slowest compared to other common encoding 
methods. Hamming-2 encoding (states are different in 2 bits) 
has less errors than binary or one-hot encodings that are two 
other alternatives (Fig. 7).  
 

 
Figure 7: Sample state machine with Hamming-2 state encoding 

Hamming-2 seems to be the best choice for fault tolerant 
designs in terms of size and speed [12]. Hamming-3 
encoding could be considered for those applications that 
require very high reliability. For state machines with a large 
number of states, a Hamming-n state encoding forces a big 
redundancy to the switch core. Following the thrifty policy 
of the thriFTy method, for mitigation of the state machines, 
Triple Module Redundancy (TMR) method with One-hot 
state encoding is preferred.  

2) Automated TMR 
The basic concept of TMR is that a fault-sensitive 

component can be hardened to SEUs by implementing three 
copies of the same component and performing a bit-wise 
majority voter on the output of the triplicate circuit. This 
component can be a single flip-flop or a logic circuit. The 
function of the majority voter is to output the logic value that 
corresponds to the majority (at least two) of its inputs. 

Several projects have shown that implementing TMR 
within FPGAs improve reliability. For example, TMR was 
used on LEON3-FT [6]. A detailed description on using 
TMR within the FPGAs can be found in [7]. 
Significant improvements in design reliability by applying 
TMR have encouraged vendors to develop several tools for 
automating the process. Xilinx TMRTool and Gaisler’s 
FTMR are of those cases [8][9]. Although effectiveness of 
TMR circuits produced by these tools has been verified in 
radiation and with fault injection [10], there are some 
discussions on easiness or generalization of using these 
tools to design fault-tolerant circuits. Gaisler’s Research 
technical report [9] states that FTMR’s increase in on-chip 
resource usage for protection is a factor of between 4,5 and 
7,5 for the demonstration application. Moreover, a 
performance decrease of about 50%, could limit the 
usability of that method. 

3) TMR and Configuration Memory 
Proper functionality of TMR in FPGAs depends on the 

fact that there should be no more than one upset in the 
configuration memory of an FPGA at each clock cycle. More 
than one upset may cause the majority voters to malfunction. 
To avoid this, configuration memory scrubbing is employed 
to periodically remove upsets stemmed from the radiation 
environment. Scrubbing is repeatedly correcting upsets in the 
configuration memory of an FPGA. Several methods have 
been suggested for doing this [11]. If scrubbing process 
would be done fast enough it can ensure that there would be 
no more than one upset in the FPGA’s configuration memory 
at a given time. 

4) TMR and the Synthesis Problem 
After validation of the design behaviour, it should be 

turned into an implementation in terms of logic gates. This 
process is called Logic Synthesis. One important aspect of 
synthesis tools is logic optimization in words of area and 
timing. To optimize the design, synthesis algorithms may 
remove the replicated parts added into the design for fault-
tolerance. Therefore, the purpose is to ensure that intentional 
replications (result of tripled FFs) are not removed by the 
synthesis tool in optimization process. 



For this, one way is to apply necessary directives in the 
synthesis tool for preserving redundant logic. Although this 
seems to work, the MWS core is to be designed as a soft 
core. That means it should be independent of the synthesis 
tools to be synthesized in any FPGA or ASIC in future. To 
achieve this goal, the state variable of the FFs were put into 
a(n) array/vector with three cells to accommodate three 
redundant copies of the same value as required for TMR 
(Fig. 8).  
This way, the synthesis tool considers each cell of the array 
as a separate state and does not realize the repeated states as 
redundant values.  

5) TMR Voter Implementation 
To implement a majority voter in FPGAs, there are two 

options. One way is to use Look-Up Tables (LUTs) that are 
logic resources to implement any boolean function inside 
FPGAs. An alternative is dedicated hardware resources 
available in FPGAs. For instance, Xilinx offers internal 3-
state buffers in its Virtex series (Virtex library primitive 
BUFT). These dedicated resources are useful when the 
available logic resources are limited. Implementing the voter 
logic by means of dedicated resources saves area used in the 
chip. For this reason, in the MW Switch core, the dedicated 
hardware resources were chosen. The structure of a majority 
voter circuit using the BUFT library primitive is presented in 
[7].  

C. Routing and Data Path 
In FPGAs, logic paths are not hard-wired as in ASICs. Data 
path and routing information are stored in configuration 
memory of FPGAs. Configuration Memory Scrubbing 
ensures that there will not be any SEU in the configuration 
memory of an FPGA, so routing information are kept safe 
and there is no need to apply replication to routing and data 
path in the thrifty fault-tolerant approach applied to the 
MWS core.  During scrubbing, the design is not interrupted. 
After scrubbing, a Readback process is recommended to 
immediately follow to ensure that SEUs were corrected in 
each clock cycle. Readback and scrubbing are mechanisms 
to detect and correct SEUs in the configuration memory of 
FPGAs without interrupting their operations. 

Instead of replicating the routing paths, the thriFTy 
method suggests the Configuration Memory Scrubbing for 
SEU mitigation of the data path information in the MWS 
core. Since the Configuration Memory Scrubbing does not 
interrupt the functionality of the switch, timing effects are  

 

 
Figure 8: Solution for the synthesis problem in the state replication 

not matter of concern. [14] and [15] provide necessary 
information regarding configuration and readback operations 
in a sample Xilinx Virtex-4 device. 

V. SIMULATION AND TEST     
There are several techniques to evaluate SEU mitigation 

approaches in FPGA designs. Common techniques are 
Radiation Test , Fault Injection and Simulation of faults in 
different subcomponents as well as the whole system. 
Radiation Test is an accurate way of determining SEU 
sensitivity of a design. In this technique, high-energy 
particles are applied to the design to measure sensitivity of 
the device to SEUs. Although this is an accurate method, it 
is very expensive and time consuming too. 

Another way of measuring SEU sensitivity is to inject 
artificial upsets into different parts of the design. Studies 
show a comparable result with radiation tests [16]. However, 
it can not simulate upsets to the configuration logic itself 
[13]. 

For the MW Switch core, a complete radiation test has 
been planned before making it operational. Up to then, the 
design is to be validated to ensure if the system 
specifications are met. In the absence of faults, the 
synthesized fault-tolerant core should behave similar to the 
non-fault-tolerant one. Besides this, the behaviour of the 
Switch core against intentional faults fed to different parts 
was simulated and studied very carefully. Simulation results 
showed that the fault-tolerant core is capable of handling 
faults in different situations. Moreover, different post-
synthesis I/O tests have successfully proved the system 
functionality, achieving expected results out of the applied 
inputs.  

Development of the MW Switch core is still ongoing, 
adding further capabilities such as covering different 
peripherals through a special translation layer. The FT 
concept together with the introduced methods remains the 
same and applicable to any further parts being added during 
the whole development phase. 

VI. RESULTS 
Table I. provides a comparison between the FT and Non-

FT Switch core in terms of resource usage and maximum 
frequency of the whole system predicted by the synthesizer. 
The synthesis results shown in Table I. were achieved using 
the Xilinx ISE development software. The prototype design 
was implemented on a Xilinx Virtex-4 FX12 FPGA on 
ML403 development board. 

Furthermore, power consumption is a major issue for 
space systems and should be carefully analyzed. 

TABLE I.  COMPARISON OF FT AND NON-FT MWS CORE 

Logic 
Utilization 

Available Non-FT 
version 

FT  
version 

Change 

Slice FFs 10944 1184 1663 +40.4% 
LUTs 10944 2238 2809 +25.5% 
FIFOs 36 16 16 0% 
Max. freq -- 101.890MHz 73.659MHz - 27.7% 

 



Table II. represents increase of power consumption after 
applying fault-tolerance to the MWS core. It is necessary to 
note that, power consumption analysis depends on the 
different operation modes of a system. The results in Table 
II. are based on considering active operating mode for the 
most of the life cycle of the design (worst case). Lower time 
considerations for the active operating mode gives less 
increase in power consumption compared to the worst case 
conditions. 

TABLE II.  POWER CONSUMPTION IN FT AND NON-FT MWS CORE 

Power 
Consumption 

Non-FT 
version 

FT  
version 

Change 

Static 12.72 mW 12.72 mW 0 mW 
Dynamic 37.538 mW 90.118 mW 52.58 mW 
Total 50.258 mW 102.838 mW 52.58 mW 
Battery Life1 34.313 h 16.435 h -18.878 h 

 
Compared to the full TMR method that in some cases, 

causes a performance decrease of 50% [9], the fault-tolerant 
MWS core, represents more reasonable results considering 
resources usage and maximum frequency of the design. 
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