
A SW MIDDLEWARE TO PROVIDE ULTRA HIGH DEPENDABILITY IN SPACE US-
ING COTS-COMPUTERS

Raffaele Vitulli (1), Sergio Montenegro (2)

(1) ESA/ESTEC, Keplerlaan 1, 2201AZ Noordwijk, The Netherlands, Email: Raffaele.Vitulli@esa.int
(2) FIRST, Kekuléstraße 7, 12489 Berlin, Germany, Email: sergio.montenegro@first.fraunhofer.de

ABSTRACT

Much more than fault tolerance, space applications
require dependability, which is the combination of
availability, reliability and safety. (The main paper will
present the relationship between these properties and

the roles of robustness and fault tolerance).
How to reach high dependability has been an important
research theme for a long time, and still today, after 20
or 30 Years of research, there is not THE ONE solution.
Big efforts go to improve reliability, for example using
reliable radiation hardened components. Many other
efforts go to improve robustness by means of fault
tolerance.
But now, we join efforts from reliability and robustness
to reach real dependability. The ESA-funded
HiPeRCAR (High Performance Resilient Computer for
Autonomous Robotics) project shows how to combine
reliability and robustness in an optimal way to get the
highest possible dependability using limited resources.
This is important because space missions have to be
sparing with resources.

Keywords: robotics, fault-tolerance, dependability,
robustness, resilience, middleware, FDIR.

1. INTRODUCTION

From our experience we can identify at least 4
important very common conceptual obstacles when
designing a fault tolerant system.

1) Any digital control system is a team work of
software and hardware. Trying to solve any problem or

challenge using only one of them means to loosing a lot
of possibilities, like a team (Software-Hardware) where
one player in software, but very few try to face the
challenge in a team work of software and hardware.

2) Another wrong assumption is to think that to provide
fault tolerance you just have to replicate resources. For
example if you can control a water tank level opening
and closing a valve, like in Fig. 1.

Then you may think: The valve can fail; let’s add
another valve (Fig. 1). Now one of the redundant valves
fails in open position, you can not control the tank any
longer. What you got is a higher possibility of failure
and not more dependability. This was not right the
solution!

3) Another wrong assumption is to think you can reach
an absolute failure free system. Then an enormous
effort is invested to reach what you can not reach. See

Figure 1: Implementing fault tolerance by replication?

Fig. 2. You can do what you want, but any system will
crash some day.

Figure 2: Infinite effort to reach a total fault free

system

4) Another important consideration is what to do after
so many resources are permanently damaged, that no
normal operation is possible any longer.

2. A NON CONVENTIONAL APPROACH TO
DEPENDABILITY

Figure 4: Increasing dependability (1)

Figure5: Increasing dependability (2)

Let’s consider (in this paper) 4 (from 0 to 3) stages of
fault tolerance:

0: No fault tolerance. One failure is enough to cause a
system failure or system crash
1: Any single failure can collapse some critical
functions, but the system remains in a safe operation.
(Gracefully degradation)
2: Like 1, but after a short time period the system can
reconfigure itself to go back to normal operation
(resilience)
3: No single failure can disturb the normal operation of
the system.

Stage 3 sounds very nice, but it requires at least a 3 fold
replication of (almost) all resources, including volume,
mass, power consumption, heat production, etc. For
some space applications this can be a prohibitive
condition. Furthermore after the first permanent failure,
the system will go down to stage 2 or 1. For long
operations where permanent failures are expected, stage
3 will be possible only at the beginning of the mission.

It is therefore advisable to create a resources
economical system which provides stage 2 for the
whole mission even after several failures. Our target is
to get the highest possible dependability using very
limited resources. The system has to be operable always
in a safe way, but temporally loose of advanced features
is allowed. Thereby it was very important not to do
again the common mistakes listed in chapter 1.

2.1. Step 1: Let it crash!

A realistic node computer operation can be represented
like in Fig. 3.

Figure 3 realistic node computer operation.

After start up a node computer will work properly for a
time period (may be years) but some day it will crash
and no one can impede this. Better than trying to create
a (sub)system which shall never fail or where a failure
is an extraordinary exception, we count with failures,
they are not exceptions, but expected events which will
be handles smoothly. The paradox situation is: to be
safe, be ready to crash at any time. To increase the
dependability of the system we can increase the
reliability of each node (eg. mean time to failure MFTF)
and reducing the recovery time after crashes (increasing
Availability). See Fig. 4.

Much more important than try to avoid crashes (we can
not) it to provide an ultra fast recovery. Recovery
includes reboot, restore context of applications and
update the context to the current situation. Having a
very short recovery time, we can tolerate very easily
multiple node crashes, and if we use some kind of
redundancy, the probability of two redundant nodes to
be down at the same time becomes lower. See Fig. 5.

Today the recovery time is very long, depending on the
operating system it can range from 10 seconds to some
minutes. This long period increase the probability of a
total system failure if redundant nodes are down at the
same time (see Fig. 5). Or target is to have a recovery
time of a few milliseconds. If so, we can tolerate several
crashes per second without problems.

2.2. Step 2: Do not paddle only on one side, use both:
Software and Hardware.

Better than trying to have fault tolerance in Hardware
and to make it transparent to the software (e.g. Maxwell
approach), we implements robustness as a harmonized
team work of software and hardware. If you have a
legacy or extreme complex software, which you cannot
modify (or even understand) then you have to make
fault tolerance transparent to the software, but doing so
you lose an enormous potential from HW-SW team
work: Hardware provides redundancy and software
provides an intelligent redundancy management.

Using an intelligent dynamic redundancy management it
is possible to adapt the redundancy degree to the current
situation and mission phase. The resources usage can
vary to provide high performance (no/low redundancy)
or high dependability (high redundancy). See Fig. 6.

3. HARDWARE APPROACH

In order to reach a level of reliability suitable for critical
space mission, several architectures have been proposed
that exploit a full HW approach to reach dependability.
An example is the Maxwell Board, that is a Power-PC
based board with an embedded FPGA that implements
TMR (Triple Modular Redundancy) voting in order to
prevent failures. The drawback is the quite relevant
cost, restriction of purchase abroad, resource demand.

Figure 6: Dynamic usage of resources

European industry is, on the other hand, mainly
focusing on rad-hard component like the LEON family.
But in this case the drawback is the limited processing
power, which is quite relevant in the case of the
Maxwell board.

All these limitations makes important to find an
alternative solution based on Hybrid SW-HW
architecture.

4. HiPeRCAR (SW-HW) APPROACH

HiPeRCAR aims to provide a dependable high
performance control system for space applications,
which guarantees continuity of services despite of
failures and anomalies.
It was required:
- High performance in space and low cost
- Fault tolerance and no replication of resources

- To tolerate crashes but to do not discontinue the
provided services

For the first glance all of them appear to be in
contradictions but HiPeRCAR has a way to combine
COTS and Radiation-Hard Hardware to fulfil all these
requirements.

The solution places a Radiation-Hard node as front-end
of a pool of high performance COTS nodes. The Front-
End computer guarantees the safety of the system and
the continuity of basic services. The Back-End high
performance pool of COTS nodes provides not-
dependable high end computations (nominal operation
mode). See Fig. 7.

Services provided by the system are produced by a
(software) network of co-operating tasks which are
distributed in a (hardware) network of computing nodes.
The safety, performance and continuity of service do
not depend on computer nodes, it relays on the
properties of the SW-HW network. The network is the
computer.

Each service has a basic mode and an advanced nominal
mode. The basic mode guaranties only the safe
operation of the system. It is very simple and not
resources demanding. The basic mode is implemented
in tasks running on master nodes. The nominal mode
includes complex and resources intensive computations,
which are provided by a network of tasks distributed in
the worker nodes. The most important property of the
(SW) network is to allow task to smoothly flow from
one node to another. At any time any task can disappear

from one node (e.g. node crashes) and reappear in
another node (task distribution). This is a normal system
execution and do not require any type of
reconfiguration, because it is not reconfiguration, the
system relays on a continuous flow of tasks.

This approach requires new and innovative software
concepts, which go beyond standard procedural
operating systems and middleware. In the project we
develop the HiPeRCAR framework, which is based on
the BOSS (BIRD Operating System) real time kennel
and middleware. The HiPeRCAR framework provides
an object oriented framework application interface. Its
middleware distributes messages according to a simple
producer / subscriber protocol. Message distribution is
position independent and connectionless. This is
important to allow an effective task flow in the system.
To support fault tolerance and redundancy management
the middleware is able to replicate messages without
extra handling of the control tasks.

Figure 7: Layered services

5. HiPeRCAR-FRAMEWORK KERNEL AND
MIDDLEWARE

The HiPeRCAR real time kernel and middleware offer
an integrated framework (OO) interface. There is no
need to differentiate what is a RT kernel and what is

middleware functionality. Both together will be called
the HiPeRCAR-framework. The HiPeRCAR framework

aims to offer the most simple and small possible
interface to users tasks, which still provides all required
functionality and flexibility.

Figure 8: Hypothetical Example of Task Distribution

Figure 9: HIPERCAR System Configuration

The HiPeRCAR-framework includes time management,
resource management and communication functionality.
Without an application the framework is inactive, it just
reacts to interrupts doing nothing. An application can
add actions to the HiPeRCAR-framework by inheriting
classes and creating active objects. These objects will
be integrated automatically in the framework. In this
way the framework will be extended with user
functionality.

5.1. Communicating tasks

Let’s take as example a task network to control 3 arms
using an environment model. The task distribution is
shown in Fig. 8.

For the implementation there is no difference where the
tasks will be deployed. The position of tasks can even
change at run time, without requiring any explicit
reaction of the other involved tasks. Task communicate
using the HiPeRCAR Middleware, but its only interface
are messages, the rest is transparent. Tasks just define

input and output messages. The rest is some one else
job (Middleware and real time kernel).

5.2. Structure of the HiPeRCAR framework

A HiPeRCAR controller is implemented as a collection
of building blocks on the top of a middleware, which
creates a virtual totally interconnection network for all
tasks running on it. The middleware allows every task
to communicate with any other task independent of their
position. It imposes no limitations to communication

paths, but the application shall use/create a meaningful,
reasonable and efficient inter-task communication
structure.

There may be different system configurations for
HiPeRCAR applications. The system supports to
migrate from any of these configurations to another
without having to change the application. This will be
achieved by implementing a layered system like in Fig.
9.

The application tasks run on the top of a virtual global
middleware which cross node boundaries and
interconnect all threads/tasks in the system. They do not
need to know the details of lowered layers. Applications
can interact without having to know about locations and
hardware architectures.

The global middleware is implemented on local
middleware running on each node. This local

Figure 10: Fault tolerance and resilience

Figure 11: HiPeRCAR Simulator

middleware runs on the top of a real time kernel or
operating system which administrates the time and local
resources in the node. The real time kernel is
implemented using a virtual hardware abstraction,
which is implemented by the hardware dependent layer.
To move from any hardware platform to another one,
only this small layer has to be re-implemented.

5.3. Fault Detection and Fault Recovery

HiPeRCAR provides continuity of services despite of
failures in Worker nodes (the Master node is supposed
to be dependable). In our approach it is possible to
recover (reboot and initialise) a node in less than one
seconds, but this is still too long in order to provide real
time continuity of service. Therefore the safe control do
not relay on tasks running on Workers. The basic tasks
allocated in the Worker node can control the devices
alone, but if advanced tasks are running, the results of
such advanced services will be used to improve the
movements and autonomy.

In this way, if a Worker node fails just the advanced
commands will be missing, but the basic control task
stays operable. From outside of the HiPeRCAR kernel
there is no discontinuity of service (control). The
System goes instantaneously and automatically from
nominal operation to basic operation. See Fig. 10.

In the meantime, a monitor tasks will detect the failure
of the Worker node. They report it to a recovery task
which will try to reboot the faulty node. If this does not
help, the faulty node will be turned off and eventually a
spare node will be activated. After the recovery task, a
configurator task will reallocate advanced tasks on
running workers to go back to nominal operation
(resilience). If this fails, then the system will stay in the
basic operation mode (graceful degradation). In any
case there will be no interruption of service.

6. VERIFICATION TEST BED

Before the Demonstrator can be built, the concepts will
be tested on a simulator running on normal workstations
like in Fig. 11.

The real robot will be substituted by a simulation, the
SpaceWire Network will be substituted by a fast
Ethernet Network, and the flight hardware will be
substituted by normal office PCs.

For the applications it will make no difference on which
configuration they are running! We aim to make this
test environment totally transparent for any application
running on the top of the HiPeRCAR framework.

7. ACKNOLEDGMENTS

This work has been performed in the frame of an ESA-
ESTEC Contract nr. 18750. The prime contractor is

Alcatel Alenia Space Italy (Milan). The subcontractors
are Galileo Avionica (Italy), FIRST Institute Berlin
(Germany) and Syderal (Switzerland).

8. REFERENCES

1. Marra, et al. - “HiPeRCAR: the High Performance
Resilient Computer for Autonomous Robotics” -
DASIA 2006, Berlin.

2. Jameux, D. – “Application of the Payload Data
Processing and Storage System to MOSREM
Multi-processor On-board System for Robotic
Exploration Missions”

3. Astrium/Scisys – “UNIONICS Advanced On-
Board Distributed Processing Architecture” -
Initial results from the Bench-Top Demonstrator”

4. M. Johnson, B. Green, O. Eman - EADS Astrium
“Improving the efficiency of spacecraft systems
with the Unionics Advanced On-board
Architecture” – SDSS 2005

5. Guy Estaves, Alcatel Alenia Space – Super
Computers for Space Applications- SDSS 2005,
17-20 October 2005, ESTEC, Noordwijk

6. SpaceWire – Links, Nodes Routers and Networks,
ECSS-E-50-12A at ECSS-E-50-12 A

7. ESA ITT AO/1-4497/NL/AG – SpaceWire Remote
Terminal Interface ASIC.

