
A SW MIDDLEWARE TO PROVIDE ULTRA HIGH DEPENDABILITY IN SPACE US-
ING COTS-COMPUTERS

Raffaele Vitulli (1), Sergio Montenegro (2)

(1) ESA/ESTEC, Keplerlaan 1, 2201AZ Noordwijk, The Netherlands, Email: Raffaele.Vitulli@esa.int
(2) FIRST, Kekuléstraße 7, 12489 Berlin, Germany, Email: sergio.montenegro@first.fraunhofer.de

ABSTRACT

Much  more  than  fault  tolerance,  space  applications
require  dependability,  which  is  the  combination  of
availability, reliability and safety. (The main paper will
present  the  relationship  between  these  properties  and

the roles of robustness and fault tolerance). 
How to reach high dependability has been an important
research theme for a long time, and still today, after 20
or 30 Years of research, there is not THE ONE solution.
Big efforts go to improve reliability, for example using
reliable  radiation  hardened  components.  Many  other
efforts  go  to  improve  robustness  by  means  of  fault
tolerance.
But now, we join efforts from reliability and robustness
to  reach  real  dependability.  The  ESA-funded
HiPeRCAR (High Performance Resilient Computer for
Autonomous Robotics) project shows how to combine
reliability and robustness in an optimal way to get the
highest  possible dependability using limited resources.
This  is  important  because  space  missions  have  to  be
sparing with resources.
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1. INTRODUCTION

From  our  experience  we  can  identify  at  least  4
important  very  common  conceptual  obstacles  when
designing a fault tolerant system.

1)  Any  digital  control  system  is  a  team  work  of
software and hardware. Trying to solve any problem or

challenge using only one of them means to loosing a lot
of possibilities, like a team (Software-Hardware) where
one  player  in  software,  but  very  few try  to  face  the
challenge in a team work of software and hardware.

2) Another wrong assumption is to think that to provide
fault tolerance you just have to replicate resources.  For
example if you can control a water tank level opening
and closing a valve, like in Fig. 1.

Then  you  may  think:  The  valve  can  fail;  let’s  add
another valve (Fig. 1). Now one of the redundant valves
fails in open position, you can not control the tank any
longer.  What you got is a higher possibility  of failure
and  not  more  dependability.  This  was  not  right  the
solution!

3) Another wrong assumption is to think you can reach
an  absolute  failure  free  system.   Then  an  enormous
effort is invested to reach what you can not reach. See

Figure 1: Implementing fault tolerance by replication?



Fig. 2. You can do what you want, but any system will
crash some day. 

Figure 2: Infinite effort to reach a total fault free

system

4) Another important consideration is what to do after
so  many resources  are  permanently  damaged,  that  no
normal operation is possible any longer.

2.  A  NON  CONVENTIONAL  APPROACH  TO
DEPENDABILITY

Figure 4: Increasing dependability (1)

Figure5: Increasing dependability (2)



Let’s consider (in this paper) 4 (from 0 to 3) stages of
fault tolerance:

0: No fault tolerance. One failure is enough to cause a
system failure or system crash
1: Any  single  failure  can  collapse  some  critical
functions,  but  the system remains  in a safe operation.
(Gracefully degradation)
2: Like 1, but after a short time period the system can
reconfigure  itself  to  go  back  to  normal  operation
(resilience)
3: No single failure can disturb the normal operation of
the system.

Stage 3 sounds very nice, but it requires at least a 3 fold
replication of (almost) all resources, including volume,
mass,  power  consumption,  heat  production,  etc.  For
some  space  applications  this  can  be  a  prohibitive
condition.  Furthermore after the first permanent failure,
the  system  will  go  down  to  stage  2  or  1.  For  long
operations where permanent failures are expected, stage
3 will be possible only at the beginning of the mission.

It  is  therefore  advisable  to  create  a  resources
economical  system  which  provides  stage  2  for  the
whole mission even after several failures. Our target is
to  get  the  highest  possible  dependability  using  very
limited resources. The system has to be operable always
in a safe way, but temporally loose of advanced features
is  allowed.  Thereby  it  was  very  important  not  to  do
again the common mistakes listed in chapter 1.

2.1. Step 1: Let it crash!

A realistic node computer operation can be represented
like in Fig. 3.

Figure 3 realistic node computer operation.

After start up a node computer will work properly for a
time period (may be years) but some day it will crash
and no one can impede this. Better than trying to create
a (sub)system which shall never fail or where a failure
is  an extraordinary  exception,  we count with failures,
they are not exceptions, but expected events which will
be  handles  smoothly.  The  paradox  situation  is:  to  be
safe,  be  ready  to  crash  at  any  time.  To  increase  the
dependability  of  the  system  we  can  increase  the
reliability of each node (eg. mean time to failure MFTF)
and reducing the recovery time after crashes (increasing
Availability). See Fig. 4.

Much more important than try to avoid crashes (we can
not)  it  to  provide  an  ultra  fast  recovery.   Recovery
includes  reboot,  restore  context  of  applications  and
update the context  to the current  situation.   Having a
very  short  recovery  time,  we can  tolerate  very  easily
multiple  node  crashes,  and  if  we  use  some  kind  of
redundancy, the probability of two redundant nodes to
be down at the same time becomes lower. See Fig. 5.

Today the recovery time is very long, depending on the
operating system it can range from 10 seconds to some
minutes. This long period increase the probability of a
total system failure if redundant nodes are down at the
same time (see Fig. 5). Or target is to have a recovery
time of a few milliseconds. If so, we can tolerate several
crashes per second without problems. 

2.2. Step 2: Do not paddle only on one side, use both:
Software and Hardware.

Better than trying to have fault tolerance in Hardware
and to make it transparent to the software (e.g. Maxwell
approach), we implements robustness as a harmonized
team work of  software  and hardware.   If  you  have  a
legacy or extreme complex software, which you cannot
modify  (or  even  understand)  then  you  have  to  make
fault tolerance transparent to the software, but doing so
you  lose  an  enormous  potential  from  HW-SW  team
work:  Hardware  provides  redundancy  and  software
provides an intelligent redundancy management.

Using an intelligent dynamic redundancy management it
is possible to adapt the redundancy degree to the current
situation  and mission phase.  The  resources  usage can
vary to provide high performance (no/low redundancy)
or high dependability (high redundancy). See Fig. 6.

3. HARDWARE APPROACH

In order to reach a level of reliability suitable for critical
space mission, several architectures have been proposed
that exploit a full HW approach to reach dependability.
An example is the Maxwell Board, that is a Power-PC
based board with an embedded FPGA that implements
TMR (Triple Modular Redundancy) voting in order to
prevent  failures.  The  drawback  is  the  quite  relevant
cost, restriction of purchase abroad, resource demand.

Figure 6: Dynamic usage of resources

European  industry  is,  on  the  other  hand,  mainly
focusing on rad-hard component like the LEON family.
But in this case the drawback is the limited processing
power,  which  is  quite  relevant  in  the  case  of  the
Maxwell board.

All  these  limitations  makes  important  to  find  an
alternative  solution  based  on  Hybrid  SW-HW
architecture.

4. HiPeRCAR (SW-HW) APPROACH

HiPeRCAR  aims  to  provide  a  dependable  high
performance  control  system  for  space  applications,
which  guarantees  continuity  of  services  despite  of
failures and anomalies.
It was required:
- High performance in space and low cost
- Fault tolerance and no replication of resources



- To tolerate  crashes  but  to  do not discontinue  the
provided services

For  the  first  glance  all  of  them  appear  to  be  in
contradictions  but  HiPeRCAR has  a  way  to  combine
COTS and Radiation-Hard Hardware to fulfil all these
requirements.

The solution places a Radiation-Hard node as front-end
of a pool of high performance COTS nodes. The Front-
End computer guarantees the safety of the system and
the  continuity  of  basic  services.  The  Back-End  high
performance  pool  of  COTS  nodes  provides  not-
dependable high end computations (nominal operation
mode). See Fig. 7.

Services  provided  by  the  system  are  produced  by  a
(software)  network  of  co-operating  tasks  which  are
distributed in a (hardware) network of computing nodes.
The  safety,  performance  and  continuity of  service  do
not  depend  on  computer  nodes,  it  relays  on  the
properties of the SW-HW network.  The network is the
computer.

Each service has a basic mode and an advanced nominal
mode.  The  basic  mode  guaranties  only  the  safe
operation  of  the  system.  It  is  very  simple  and  not
resources demanding. The basic mode is implemented
in tasks  running on master  nodes.  The nominal  mode
includes complex and resources intensive computations,
which are provided by a network of tasks distributed in
the worker nodes. The most important property of the
(SW) network is to allow task to smoothly flow from
one node to another. At any time any task can disappear

from  one  node  (e.g.  node  crashes)  and  reappear  in
another node (task distribution). This is a normal system
execution  and  do  not  require  any  type  of
reconfiguration,  because  it  is  not  reconfiguration,  the
system relays on a continuous flow of tasks.

This  approach  requires  new  and  innovative  software
concepts,  which  go  beyond  standard  procedural
operating  systems  and  middleware.  In  the  project  we
develop the HiPeRCAR framework, which is based on
the BOSS (BIRD Operating System) real  time kennel
and middleware.  The HiPeRCAR framework provides
an object oriented framework application interface. Its
middleware distributes messages according to a simple
producer / subscriber protocol. Message distribution is
position  independent  and  connectionless.  This  is
important to allow an effective task flow in the system.
To support fault tolerance and redundancy management
the  middleware  is  able  to  replicate  messages  without
extra handling of the control tasks.

Figure 7: Layered services



5.  HiPeRCAR-FRAMEWORK  KERNEL  AND
MIDDLEWARE

The HiPeRCAR real time kernel and middleware offer
an  integrated  framework  (OO)  interface.  There  is  no
need to differentiate  what  is  a RT kernel  and what is

middleware functionality.  Both together will be called
the HiPeRCAR-framework. The HiPeRCAR framework

aims  to  offer  the  most  simple  and  small  possible
interface to users tasks, which still provides all required
functionality and flexibility.

Figure 8: Hypothetical Example of Task Distribution

Figure 9: HIPERCAR System Configuration



The HiPeRCAR-framework includes time management,
resource management and communication functionality.
Without an application the framework is inactive, it just
reacts  to interrupts doing nothing.  An application can
add actions to the HiPeRCAR-framework by inheriting
classes and creating active objects.  These objects will
be  integrated  automatically  in  the  framework.  In  this
way  the  framework  will  be  extended  with  user
functionality.

5.1. Communicating tasks

Let’s take as example a task network to control 3 arms
using  an  environment  model.  The  task  distribution  is
shown in Fig. 8.

For the implementation there is no difference where the
tasks will be deployed. The position of tasks can even
change  at  run  time,  without  requiring  any  explicit
reaction of the other involved tasks. Task communicate
using the HiPeRCAR Middleware, but its only interface
are messages, the rest is transparent.  Tasks just define

input and output messages.  The rest  is some one else
job (Middleware and real time kernel).

5.2. Structure of the HiPeRCAR framework

A HiPeRCAR controller is implemented as a collection
of building blocks on the top of a middleware, which
creates a virtual totally interconnection network for all
tasks running on it. The middleware allows every task
to communicate with any other task independent of their
position.  It  imposes  no  limitations  to  communication

paths, but the application shall use/create a meaningful,
reasonable  and  efficient  inter-task  communication
structure. 

There  may  be  different  system  configurations  for
HiPeRCAR  applications.  The  system  supports  to
migrate  from  any  of  these  configurations  to  another
without having to change the application. This will be
achieved by implementing a layered system like in Fig.
9.

The application tasks run on the top of a virtual global
middleware  which  cross  node  boundaries  and
interconnect all threads/tasks in the system. They do not
need to know the details of lowered layers. Applications
can interact without having to know about locations and
hardware architectures.

The  global  middleware  is  implemented  on  local
middleware  running  on  each  node.  This  local

Figure 10: Fault tolerance and resilience

Figure 11: HiPeRCAR Simulator



middleware  runs  on  the  top  of  a  real  time kernel  or
operating system which administrates the time and local
resources  in  the  node.  The  real  time  kernel  is
implemented  using  a  virtual  hardware  abstraction,
which is implemented by the hardware dependent layer.
To move from any hardware platform to another one,
only this small layer has to be re-implemented.

5.3. Fault Detection and Fault Recovery

HiPeRCAR provides  continuity  of  services  despite  of
failures in Worker nodes (the Master node is supposed
to  be  dependable).  In  our  approach  it  is  possible  to
recover (reboot  and initialise) a node in less  than one
seconds, but this is still too long in order to provide real
time continuity of service. Therefore the safe control do
not relay on tasks running on Workers. The basic tasks
allocated in  the Worker  node can control  the devices
alone, but if advanced tasks are running, the results of
such  advanced  services  will  be  used  to  improve  the
movements and autonomy. 

In this  way,  if  a  Worker node fails  just  the advanced
commands will  be missing,  but  the basic  control  task
stays operable. From outside of the HiPeRCAR kernel
there  is  no  discontinuity  of  service  (control).  The
System  goes  instantaneously  and  automatically  from
nominal operation to basic operation. See Fig. 10.

In the meantime, a monitor tasks will detect the failure
of the Worker node. They report  it to a recovery task
which will try to reboot the faulty node. If this does not
help, the faulty node will be turned off and eventually a
spare node will be activated. After the recovery task, a
configurator  task  will  reallocate  advanced  tasks  on
running  workers  to  go  back  to  nominal  operation
(resilience). If this fails, then the system will stay in the
basic  operation  mode  (graceful  degradation).  In  any
case there will be no interruption of service.

6. VERIFICATION TEST BED

Before the Demonstrator can be built, the concepts will
be tested on a simulator running on normal workstations
like in Fig. 11.

The real robot will be substituted by a simulation, the
SpaceWire  Network  will  be  substituted  by  a  fast
Ethernet  Network,  and  the  flight  hardware  will  be
substituted by normal office PCs.

For the applications it will make no difference on which
configuration  they  are  running! We aim to  make this
test environment totally transparent for any application
running on the top of the HiPeRCAR framework.
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