
Twins4Space: Enabling Modular Space Systems
Using a SpaceWire Network

Stefan Lindörfer1, Sven Wente, Julian Rothe, Sergio Montenegro

1Julius-Maximilians Universität Würzburg
Sanderring 2, 97070 Würzburg, Germany

Phone: +49 931 31-87888, Mail: s tefan . lindoerfer @uni-wuerzburg.de

Abstract: The processing needs of space missions are increasing quickly. Current space-qualified
on-board computers (OBC) are limited in their performance and flexibility. Future applications,
such as autonomous spacecraft missions or image processing using AI, will exceed the capabilities
of this hardware. To deal with the growing processing demands a modular architecture utilizing
cheap and powerful commercial-off-the-shelf (COTS) components is a common approach. The
Twins4Space project develops a new architecture of soft- and hardware components including a
distributed runtime environment. The RODOS middleware is being adapted to create a modular,
industry 4.0 inspired, solution. All nodes are connected by a SpaceWire network with a meshed
topology that provides redundant data links to obtain fault tolerance. Available components on the
market can be easily integrated into the system. The needed routing functionalities are
implemented in VHDL and run in an FPGA. Additionally, the Twins4Space approach is able to
complete a dynamic reconfiguration of the whole system during runtime. This enables adding new
nodes to the system as well as removing faulty nodes. This paper is to explain the details of the
Twins4Space concept and focuses on the implementation of the project's communication layer.

1. INTRODUCTION

Complex systems and missions play an increasingly important role in modern
space missions. Modular systems are an adequate approach to meet these
increased requirements. By connecting standardized modules, a network is created
with different payload functionalities and integrated software applications,
enabling the design of spacecraft with a wide range of capabilities. However,
modular space systems are challenging to develop due to the complexity in
routing and networking and require a deep understanding of the technical
requirements.

The overarching goal of the Twins4Space project is to develop and demonstrate
such a standardized platform, which should be able to form the basis of a modular
space system by providing an easy-to-integrate software and hardware interface
for different payloads and modules. This paper focuses on the presentation of the
communication layer of the modular platform, describes the configuration and
integration of the operating system and shows the implementation using real,
commercially available hardware in a network topology.

2. METHODOLOGY

The fundamental component of this platform is a communication layer that not
only enables data transfer and routing between connected modules but can also

mailto:sven.wente@uni-wuerzburg.de
mailto:sven.wente@uni-wuerzburg.de
mailto:sven.wente@uni-wuerzburg.de
mailto:sven.wente@uni-wuerzburg.de
mailto:sven.wente@uni-wuerzburg.de

react dynamically to changes in the network and perform reconfiguration. For this
purpose, SpaceWire, a communication protocol specially developed for and
tailored to space travel, is used.[1] The layer on top of this is provided with an
easy-to-use interface so that the developed functionalities can be used in an
uncomplicated way.

On top of the communication layer, an embedded Linux derivative is used as the
operating system, which is characterized above all by its high flexibility and
accessibility with regard to software development. In addition, the real-time
operating system RODOS[2] was integrated via the POSIX interface in order to
provide real-time requirements. Furthermore, RODOS takes over important tasks
of the network communication using its built-in mechanisms.
The developed and customized framework of hardware and software is illustrated
in Figure 1 and is implemented on a system-on-a-chip (SoC) from the
manufacturer Xilinx, in which an FPGA is also integrated, and covers the lowest
three layers of the OSI reference model up to the network layer.

Fig. 1: Schematic Structure of the System-on-a-Chip

2.1 Communication Layer

By outsourcing communication technology applications to the FPGA, two main
advantages can be realized. Firstly, there is a higher execution speed compared to
relying on the CPU. Secondly, this approach frees the CPU of certain tasks,
allowing more computational time on other important processes.

SpaceWire is used as the communication protocol due to its special suitability for
space projects, as already mentioned. Its transmission interface standard LVDS
(Low Voltage Differential Signaling) makes it less susceptible to noise and
radiation. In addition, it offers useful mechanisms such as flow control and is
connection-oriented to ensure reliable network traffic.
To realize the routing functionality at the network layer, a SpaceWire router based
on the open-source IP "SpaceWire Light IP"[3] has been developed, which can be
synthesized with a generic number of physical ports and is SpaceWire standard
compliant. The router uses a crossbar architecture and is thus able to handle
multiple independent data transfers simultaneously. A connection to the ARM-
AMBA/AXI4-Lite bus allows the router to be controlled via software. In addition,
the states of the individual ports can be read out to enable the control software to

react to various network events. In general, the router can also be operated without
software. Additionally supported is the receiving and sending of SpaceWire Time-
Codes over the network, which can also be generated periodically by the router on
instruction.
To enable the software to send and receive data, a CPU interface was developed to
provide this functionality. In the back-end this device is connected to the ARM-
AMBA/AXI4 bus of the CPU and in the front-end to port 0 of the SpaceWire
router. This port is specifically used for controlling the nodes and configuring the
router. Certain signals, such as the reception of SpaceWire Time-Codes, are also
communicated to the CPU via interrupts to allow faster response to events. The
CPU interface was furthermore designed to be Direct Memory Access (DMA)-
capable so data transfers can be carried out in a resource-saving manner without
involving the CPU.

2.2 Software Architecture

Building on the hardware in the FPGA, a customized version of a PetaLinux[4]
instance is run, which serves as the operating system. PetaLinux is a derivative of
the Yocto-Project[5] developed by Xilinx and provides extensive support for the
Xilinx board used, including kernel, drivers and Board Support Package (BSP).
Various packages have also been included to facilitate the development of
applications on this embedded platform. A custom-developed driver acts as a link
between the software and the devices integrated in the FPGA, providing control
and data transfer in both directions.
The customized RODOS middleware runs via POSIX on PetaLinux and provides
data transfer concepts such as publish-subscribe methods and request-response
mechanisms for network communication. Publish-subscribe allows nodes to
transmit data over the network regardless of the number of recipients, since
recipients are only subscribed to specific types of data. The request-response
mechanism, on the other hand, allows a node to specifically request data from
another node and wait for a response.

2.3 Routing Functionality

Each node in the network has its own identification number to enable unique
addressing. Using a routing algorithm, each node independently detects the
network topology and generates the routing table. This process is executed in
regular, short intervals in order to be able to react quickly and dynamically to
changes in the network. This allows for the addition or removal of nodes in a
seamless way, without losing messages.

3. RESULTS

In order to test and verify the devices developed using a hardware description
language, extensive testbenches were developed during the design phase. In

addition, after implementation, the SpaceWire compliance of all developed
devices was successfully verified and validated using a STAR-Dundee SpaceWire
Link Analyzer Mk3[6].

The hardware used for a demonstrator, the Xilinx Zynq
Board ZC706[7] does not have SpaceWire connectors,
therefore a separate board, shown in Figure 2, had to be
developed first to provide this functionality. The board
plugs into the FMC connector of the Xilinx board and
also provides further GPIO pins for optional connection
of additional devices. Required pins are routed from
the FPGA to the board and back.

Last but not least, a UART-SpaceWire adapter was designed to be integrated into
the FPGA for easy access to the network from outside. It is controlled by
commands via the UART interface and offers the possibility to send and receive
data packets as well as to query status information.

4. CONCLUSION

In summary, this paper presents the basic architecture of a modular platform that
is being developed as part of the Twins4Space project. The article outlined the
structure of data communication over the network and explained the concepts and
methods utilized for this purpose.
The presented structure will be tested in the next stages of the project by using
multiple Xilinx Zynq boards. Through load and stress tests, the robustness and
reliability of the structure will be demonstrated on real hardware.

5. REFERENCES

[1] SpaceWire Standard, ECSS-E-ST-50-12C, ESA, Noordwijk (Netherlands) (2019)
[2] S. Montenegro and F. Dannemann, RODOS – real time kernel design for
dependability, DASIA (2009)
[3] J. van Rantwijk. SpaceWire Light IP. Available under
https://opencores.org/projects/spacewire_light (Accessed on March 3, 2023)
[4] PetaLinux Tools. Available under
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
(Accessed on March 3, 2023)
[5] Yocto-Project. Available under https://www.yoctoproject.org/ (Accessed on March 3,
2023)
[6] STAR-DUNDEE SpaceWire Link Analyzer Mk3. Available under https://www.star-
dundee.com/products/spacewire-link-analyser-mk3/#product_features (Accessed on
March 3, 2023)
[7] AMD Zynq 7000 SoC ZC706. Available under
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html (Accessed on
March 3, 2023)

Fig.2: Developed FMC
SpaceWire Board

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.star-dundee.com/products/spacewire-link-analyser-mk3/#product_features
https://www.star-dundee.com/products/spacewire-link-analyser-mk3/#product_features
https://www.yoctoproject.org/
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://opencores.org/projects/spacewire_light

