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Abstract: Attitude control algorithms are unintuitive and difficult to master. As a result, many pico- and 

some nano-satellites are built that have attitude control hardware, but still cannot stably control their atti-

tude. Parameterizing attitude control algorithms is done through lengthy manual testing and tuning. The 

recent advances in the field of Artificial Intelligence (AI) and machine learning open new possibilities of 

controller design, by applying deep reinforcement learning to train a controller instead of manually fine 

tuning it. Such an approach would enable a more efficient attitude controller development process. 

Our work applies the Proximal Policy Optimization (PPO) Deep Reinforcement Learning (DRL) algorithm 

in combination with the Basilisk Astrodynamics Simulation Framework, to train an attitude controller in 

the form of an AI-agent with a realistic simulator. We evaluated our approach using two spacecraft config-

urations, the 4 kg InnoCube CubeSat which is in development and a hypothetical 750 kg spacecraft, and 

outline the differences in behavior regarding training and execution as well as general lessons learned from 

designing the observation space and the reward function. In particular we tackle the problem of variations 

in the inertia tensor of the respective spacecraft to increase the robustness of the controller. 

1. INTRODUCTION AND RELATED WORK  

Reinforcement Learning [1] has seen a renaissance with neural network based Deep Re-

inforcement Learning as it gained widespread attention across various domains since 

2013 [2-4]. Besides the application for games like Atari [2, 3] and Go [5, 6] there has 

recently been increased interest in DRL in the aerospace community [7, 8] and especially 

the training of UAV [9-11] and spacecraft attitude controllers [12-15]. Some work focuses 

on discrete actions, e.g., n discrete torques from which the controller can choose [13], 

while others employ continuous action spaces [14]. Most work however assumes fixed 

moments of inertia. In case the spacecrafts assumed moments of inertia do not match its 

actual ones or change due to i.e., fuel consumption, the controller performance may de-

cline. 

We therefore investigate the effect of changing moments of inertia on a DRL attitude 

controller. We employ the Stable-Baselines3 [16] implementation of Proximal Policy Op-

timization DRL algorithm [17] within the OpenAI Gym framework [18]. The PPO algo-

rithm is a popular DRL algorithm used to realize various DRL tasks ranging from video 

games to fine-tuning complex language models like the recently released ChatGPT by 

OpenAI1. Despite great progress in the area of DRL, sample inefficiency is still a major 

challenge. Therefore, a simulator is necessary for training that can generate enough train-

ing samples in reasonable time. As simulator the Basilisk Astrodynamics Simulation 

Framework2  was chosen. It provides the tools necessary to customize the simulated 

 
1 https://openai.com/blog/chatgpt/ 
2 https://hanspeterschaub.info/basilisk/ 
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spacecraft and comes with a Python interface for seamless integration into the Python 

based DRL environment. 

2. MODELS 

Two models were considered. The first model is based on the 4 kg InnoCube Cubesat [19, 

20], jointly developed by the Julius-Maximilians-Universität Würzburg, the TU-Braun-

schweig and the TU-Berlin. The moments of inertia were computed using a CAD model 

of the satellite. The second model is a hypothetical 750 kg spacecraft (“LargeSat”) with 

high inertia to contrast InnoCube. Both models feature three reaction wheels with a max 

torque of 0.002 Nm for InnoCube and 0.2 Nm for LargeSat. The initial moments of iner-

tia, given by their diagonals, were (0.0427, 0.0427, 0.0068)  kg⋅m² for InnoCube and (900, 

800, 600)  kg⋅m² for LargeSat. The resolution of the simulation and therefore the duration 

of one time step was set to 1 second. 

3. HYPERPARAMETERS AND OBSERVATION SPACE 

The reinforcement learning procedure requires the design of a so called observation space, 

that is the input the AI-agent receives, an action space, defining which actions the AI-

agent can take, and a so called reward function which is to be defined and optimized. 

During training the agent receives an observation and predicts an action that is iteratively 

optimized to maximize the reward. The default network architecture was replaced by a 

three-layer network with 128 neurons each and tanh activation function for the actor and 

the critic respectively. Early experiments showed catastrophic forgetting/unlearning dur-

ing training, likely stemming from occasional large policy updates. To stabilize the train-

ing process, the max_grad_norm and target_kl parameters where adjusted to limit the 

magnitude of policy change during training. Additionally the learning rate was annealed 

quadratically. The hyperparameters used are listed in Table 1. 

Table 1: Hyperparameters used during the training of the AI-agents 

n_steps gamma max_grad_norm target_kl learning_rate batch_size 

2048 0.95(InnoCube) 

0.99(LargeSat) 

0.1 0.05 Quadratically annealed. 

Init. value 5e-4 (1e-5 for 

post-training) 

64 

 

The final observation space was chosen to be a 25-element vector consisting of 

(𝑒𝑟𝑟_𝑞𝑢𝑎𝑡𝑡𝑖−1 , 𝑒𝑟𝑟_𝑞𝑢𝑎𝑡𝑡𝑖 , 𝑎𝑡𝑖−1 , 𝑒𝑟𝑟_𝑟𝑟𝑡𝑖−1 , 𝑒𝑟𝑟_𝑟𝑟𝑡𝑖 , 𝑎𝑡𝑡_𝑞𝑢𝑎𝑡𝑡𝑖−1 , 𝑎𝑡𝑡_𝑞𝑢𝑎𝑡𝑡𝑖) , with 

𝑒𝑟𝑟_𝑞𝑢𝑎𝑡 being the 4-element attitude error quaternion, 𝑒𝑟𝑟_𝑟𝑟 the 3-element spacecraft 

rotation rate error, 𝑎 the 3-element vector of commanded torques as agent actions and 

𝑎𝑡𝑡_𝑞𝑢𝑎𝑡  the 4-element attitude quaternion. The subscript 𝑡𝑖  indicates the current 

timestep and 𝑡𝑖−1 the previous one. This observation space allows inferring moments of 

inertia implicitly given two consecutive states with the action that caused the state transi-

tion. 

 



4. REWARD FUNCTION 

The value for the reward function 𝑅𝐹𝑡𝑖 at timestep 𝑡𝑖 is evaluated as follows: 

𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖 = 1 − |𝑒𝑟𝑟_𝑞𝑢𝑎𝑡𝑡𝑖[0]| 

∆𝑎𝑛𝑔𝑙𝑒𝑡𝑖 =  𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖 − 𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖−1 

𝑝𝑡𝑖 = −𝑛𝑜𝑟𝑚𝑡𝑖 = −‖𝑒𝑟𝑟_𝑟𝑟𝑡𝑖‖ 

𝑅𝐹𝑡𝑖 = 𝑟𝑒𝑤𝑎𝑟𝑑𝑡𝑖 = 𝑝𝑡𝑖 + 𝑟𝑡𝑖  

𝑟𝑡𝑖 = 

{
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𝑛𝑜𝑟𝑚𝑡𝑖 + 0.01
                , 𝑖𝑓 𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖 < 3.8𝑒−5

𝑒−
𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖
0.14                   , 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖 < 𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖−1

𝑒−
∆𝑎𝑛𝑔𝑙𝑒𝑡𝑖
0.14 ⋅ 0.1         , 𝑒𝑙𝑠𝑒 𝑖𝑓 ∆𝑎𝑛𝑔𝑙𝑒𝑡𝑖 < ∆𝑎𝑛𝑔𝑙𝑒𝑡𝑖−1

𝑒−
𝑒𝑟𝑟_𝑎𝑡𝑡𝑡𝑖
0.14 − 1                                                           , 𝑒𝑙𝑠𝑒 

 

with 𝑒𝑟𝑟_𝑞𝑢𝑎𝑡𝑡𝑖[0] being the scalar component of the error quaternion. In the following, 

the subscript 𝑡𝑖 is omitted due to brevity. It is to be noted, that the vector of spacecraft 

rotation rate errors 𝑒𝑟𝑟_𝑟𝑟 is scaled by a spacecraft-configuration specific scalar, so that 

no value of the rate vector exceeds 1 during training. For InnoCube this scalar is 300 and 

4 for LargeSat. The reward function used is an extension of the reward function from [13] 

and conditions the agent to achieve the goal-attitude while subtracting the regularization 

term 𝑝, in order to prevent drastic rate changes. The reward is maximized, when the goal-

attitude is achieved as fast as possible and then held steady.  

Since light spacecraft, unlike their inert and slow counterparts, may suffer from oversteer-

ing, we introduced a modification to the training process for this type of spacecraft. We 

replaced the first condition of the 𝑟 term with 
1

𝑛𝑜𝑟𝑚+0.01
− 91. This modified reward func-

tion is called 𝑅𝐹𝑝𝑡 with subscript 𝑝𝑡 for post-training, which refers to a second training 

run using the initially trained agent as base and 𝑅𝐹𝑝𝑡 as reward function. The post-train-

ing reward function however is unsuited for initial training as it greatly increases the sam-

ple inefficiency due to the harsh rate penalty reducing the incentive of attaining the goal-

attitude during early training. 

5. TRAINING AND RESULTS 

Most works on AI attitude controllers assume fixed moments of inertia. This however 

may not always be the case in reality.  Changes in the moments of inertia may lead to a 

reduction in the quality of the controller performance [12]. The authors of [21] report that 

an agent trained on specific moments of inertia is applicable to larger inertia but struggles 

for lower inertia. The latter most likely stems from oversteering, which small and light 

satellites are especially prone to. To tackle this issue, during training, random moments 

of inertia were generated by first taking the minimum and maximum values from the 

original moments of inertia and generating a new random diagonal by drawing from the 

interval [𝑚𝑖𝑛 ⋅ 0.6, 𝑚𝑎𝑥 ⋅ 1.4] for each value independently. 

Both the InnoCube- and the LargeSat-configuration were trained for 200 million steps 

each, which took about 1.5 days using a parallelization factor of 8 on an Intel i7 9600. 

Since the InnoCube-configuration features low inertia but can produce relatively large 

torques, the satellite is prone to drastic oversteering if the agent makes a mistake. We 

therefore applied the aforementioned post-training to the InnoCube-configuration. While 

LargeSat did not suffer from this problem due to its high inertia, the increased episode 

length of 1000 as compared to 50 for InnoCube significantly reduced the amount of sam-

pled moments of inertia during training. 



 

 
Figure 1: Attitude (top left), rotation rates (top right), agent actions (bottom left) and reward per step (bottom right) 

for an example run with random inertia for the post-trained InnoCube-agent. 

Figure 1 shows an example run with random moments of inertia for the post-trained In-

noCube-agent representative for the general performance of the controller. The agent was 

able to reliably attain the goal-attitude fairly quickly and stabilize the spacecraft. 

 

Figure 2: Comparison of the reward for 10000 runs with random initial-attitude, goal-attitude and moments of inertia 

for the originally trained (blue) and the post-trained (gray) InnoCube-agent evaluated on the original reward function. 

Figure 2 shows the reward for 10000 runs with random initial-attitudes, goal-attitudes and 

moments of inertia for the initially and post-trained InnoCube-agent. The occasional 

drops in reward show the oscillatory behavior of the originally trained agent. These out-

liers have been eliminated using post-training. 

Table 2: Mean reward and reward standard deviation for the originally trained and the post-trained InnoCube-agent 

based on 10000 runs with random initial-attitudes, goal-attitudes and moments of inertia. 

Agent Reward mean Reward standard deviation 

InnoCube | No post-training 8427.79 541.29 

InnoCube | Post-trained 8313.54 394.70 

 

Table 2 shows the mean reward and reward standard deviation for 10000 random runs of 

the InnoCube-configuration. The post-trained agent outperformed the initially trained 



one, since it reduced oscillatory oversteering after attaining the goal-attitude, which is 

consistent with the observations from Figure 2Figure 2. 

 

Figure 3: Attitude (left) and rates of rotation (right) for a bad example run of the initially trained InnoCube-agent 

with random moments of inertia, random initial attitude and random goal-attitude. 

Figure 3 shows a concrete example for the oscillations of the originally trained InnoCube-

agent and Figure 4 shows the improvement from applying the post-trained InnoCube-

agent to the same initial-attitude, goal-attitude and moments of inertia. Even though such 

behavior is rare even for the initially trained agent, it is undesired behavior which is to be 

eliminated when the controller is to be used in a real world scenario. By applying post-

training, the agent was corrected successfully. 

 

Figure 4: Attitude (left) and rates of rotation (right) for the setup from Figure 3 after post-training with reward func-

tion 𝑅𝐹𝑝𝑡. 

To contrast the light InnoCube, the training was repeated for the LargeSat-configuration. 

Due to the increased episode length, the discounting factor gamma was increased from 

0.95 to 0.99, causing the agent to discount immediate rewards stronger in favor of future 

rewards. The underlying attitude-control problem was easier in nature as the high inertia 

made the spacecraft less prone to oversteering. 

 

 
Figure 5: Attitude (top left), rotation rates (top right), agent actions (bottom left) and reward per step (bottom right) 

for an example run with random moments of inertia for the LargeSat-agent. 



Figure 5 shows the result of an example run for the LargeSat-agent for random moments 

of inertia and with the same initial- and goal-attitude as Figure 1 for better comparison. 

The agent was again able to reliably and swiftly attain the goal-attitudes. 

 

Figure 6: Reward for 10000 runs with random initial-attitude, goal-attitude and moments of inertia for the LargeSat-

agent evaluated on the original reward function. 

Figure 6 shows the reward for 10000 random runs for the LargeSat-agent. No significant 

drops in reward can be observed, indicating stable behavior. 

Table 3: Mean reward and reward standard deviation for the LargeSat-agent based on 10000 runs with random ini-

tial-attitudes, goal-attitudes and moments of inertia. 

Agent Reward mean Reward standard deviation 

LargeSat 82019.30 6016.68 

 

Table 3 shows the mean reward and reward standard deviation for 10000 random runs of 

the LargeSat-configuration. The reward standard deviation is low compared to the mean 

reward, confirming reliable attainment of the goal-attitudes. The increase in absolute 

numbers for both values stems from the increased episode length. 

For completeness, training of the InnoCube-agent was also performed using a gamma 

value of 0.99 and training of the LargeSat-agent was performed using a gamma value of 

0.95. For the InnoCube-configuration the now too far sighted agent showed a longer ini-

tial exploration phase during training and a decrease of quality in regards to mean reward 

and reward standard deviation (μ=6848.22| σ=2285.14). It also suffered from strong over-

steering and often failed to attain the goal-attitude. The post-trained 0.99 gamma In-

noCube-agent (𝑅𝐹𝑝𝑡) performed slightly better but still suffered from oscillatory behavior 

(μ=7146.30|σ=574.85), as the focus on a longer time horizon seems to lead to a reduction 

of quality in regards to immediate responses. For the agile InnoCube-configuration this 

results in oversteering. 

For the LargeSat-agent trained using 0.95 gamma, the training stability and mean reward 

decreased while the reward standard deviation increased (μ=76611.33| σ=11365.79). Fur-

ther post-training using 𝑅𝐹𝑝𝑡  was performed for the 0.95 and 0.99 gamma LargeSat-

agents respectively. The results were that while the 0.95 gamma agent showed minor but 



insufficient positive change (μ=76161.58|σ=10341.88), the 0.99 gamma agents perfor-

mance slightly decreased (μ=76632.90|σ=6378.11). This stems from 𝑅𝐹𝑝𝑡  enforcing a 

slow approach to the goal-attitude while the far-sighted 0.99 gamma agent quickly in-

creases its rates and just as quickly decreases them when approaching the goal-attitude. 

Additionally the post training was less stable initially, indicating that quite some re-learn-

ing took place. 

6. DISCUSSION 

We have presented an AI attitude controller that accommodates for changes in the space-

crafts moments of inertia by employing Deep Reinforcement Learning. Our controller 

showed to be robust to both increases and decreases in the moments of inertia within a 

wide range. We investigated AI attitude controllers for two different types of spacecraft, 

light satellites with low inertia and heavy spacecraft with high inertia, and discussed the 

changes in the type of training. Our results show, that light spacecraft require different 

focus, as the problem of oversteering can degrade the quality of the controller. 

7. FUTURE WORK 

Building on the lessons learned from considering a light and heavy spacecraft we want to 

investigate measures to decrease the training time of the AI-controller. This includes an 

investigation into using an agent trained on one type of spacecraft as a base for post-

training to adapt to another type of spacecraft. Ideally a transfer of the magnitude of In-

noCube to LargeSat. This type of transfer learning could speed up the adaption of the AI-

controller to vastly different spacecraft types, as there seems to be at least some common 

structure. Additionally we want to verify our AI-agent in orbit on board the InnoCube 

satellite. 
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