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Abstract
Spacecraft attitude determination plays an important part in most missions. Star trackers are one of
the most reliable and accurate sensors used for this task. One of the main problems in a star tracker is
the identification of the stars in the image to determine the spacecraft’s attitude. So far, a multitude of
algorithms have been developed to identify stars and the patterns they form. In this work, we propose to
use several well-known pattern recognition techniques in a star tracker to identify the stars. Specifically, Hu
moments, complex moments, Zernike moments, and Fourier descriptors are applied to the star identification
problem for the first time. These are proven methods used to identify various patterns in images, like
printed characters, people, or sign language. To evaluate their performance, they were tested inside a full
star tracker algorithm which includes star extraction, centroiding, star identification, verification, and
attitude computation. As a reference, the triangle method from Liebe [1] is used. Compared to this,
only Fourier descriptors offer similar performance in terms of accuracy, robustness, runtime, and memory
requirements. Hu moments and complex moments perform slightly worse than the reference method in all
metrics, except for high levels of noise in the image. Zernike moments perform the worst out of all the
tested methods. All tests were conducted on both simulated images and real images.

1 Introduction
The attitude of a spacecraft describes how it is oriented in 3D space relative to a reference coordinate
system. Knowing and controlling the attitude of a spacecraft is an important task in most missions, since
it has an effect on nearly all subsystems, like power, thermal, or communication. Therefore, measuring
the attitude of a spacecraft is an essential part of almost every mission. Star trackers generally provide
the most accurate method of measuring the spacecraft’s attitude, and they offer an absolute measurement
with three degrees of freedom [2]. This makes them a popular choice on a spacecraft. In order to determine
the orientation, they need to be able to identify the stars in the camera’s limited field of view (FOV)
over the entire celestial sphere. For this task, various algorithms have been developed over the years and
became increasingly efficient and robust [3, 4]. The main problem can be broken down to the recognition
of a known pattern in an image. This is the main subject in the field of pattern recognition, and has
been solved for numerous kinds of tasks [5–7]. Both fields - star trackers and pattern recognition - have
developed separate techniques and algorithms for solving the same problem of identifying a pattern in
an image. In this work, known techniques from the field of pattern recognition will, for the first time,
be applied to star trackers. Hu moments, complex moments, Zernike moments and Fourier descriptors
are going to be used to identify star patterns. The newly proposed methods will be compared to the
common and well established triangle method from Liebe [1]. An algorithm for a complete star tracker
will be developed, where pattern recognition techniques can be compared to traditional star identification
techniques.

2 Related Work
One of the earliest modern star identification methods was presented by Liebe [1], and enabled star
trackers to function over the entire sky without prior knowledge of the initial attitude. It uses a triangle
pattern constructed out of a central star, its two closest neighbors, and the angles between them. A
different approach at creating the pattern was presented by Padgett and Kreutz-Delgado [8]. Their pattern
is constructed by placing a grid of uniformly space squares on top of the image. Each grid cell containing
at least one star is marked as ”on” and the others ”off”. The positions of all ”on” cells then form the
pattern. An improvement to the grid algorithm was presented by Na et al. [9]. It matches the generated
pattern to the database using a different cost function, which allows a star to be in a different grid cell if
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some noise is present in the position. Furthermore, a cell is not ”on” or ”off” but instead has the value of
the magnitude of the star in this cell. These two improvements increase the accuracy of the grid based
approach but come at the cost of increased processing time. The so called Search-Less algorithm from
Mortari [10] primarily focuses on improving search time. Only the angular distance between two stars is
used to identify them. With this pattern every possible star pair combination in the image is checked.
The improvement in search time comes from sorting all angular distances in ascending order and fitting a
linear function to them. While this linear function is not a perfect fit to the data, it can be evaluated
quickly. Only a small area around the value of this function then needs to be searched. Mortari et al. [11]
improved this idea with the Pyramid algorithm. It is a pattern of four stars where the angular distance
between every star pair is used for identification. The angular distances are searched with the same
method. This algorithm has the advantage, that it works reliably even if lots of false stars are present in
the image. A different pattern was used by Silani and Lovera [12] in their Polestar algorithm. Here, all
stars around a central star are considered, which have an angular distance from the central star between a
fixed interval. The angular distances are then discretized into different bands around the central star. A
binary sequence is formed based on whether there is a star present inside the band or not. This sequence
identifies the pattern.

3 Shape descriptors for star identification
In the following section it is described, how different shape descriptors can be used for star identification.
It is illustrated, how a single star pattern can be identified using these techniques. In a star tracker, this
step is repeated for every star pattern in an image and the results can be verified against each other. This
can lead to only a partial identification of the stars in an image or no identification at all. During the
evaluation in section 4, this is considered, but not explained in more detail in this work.

3.1 Hu Moments
Hu moments consist out of seven parameters describing a 2D pattern and were introduced by Hu [13].
Their most prominent property is, that they describe a pattern regardless of its position, orientation,
or scale in an image. They were first used by Hu to identify different, printed alphabetic characters in
an image. Later Hu moments were applied to many tasks [5, 14, 15]. Despite their wide adoption, they
have never been used in star trackers even though their properties make them well suited for this task.
Depending on the spacecraft’s attitude, the pattern the stars form can be in different positions in the
image and rotated differently.

To compute the Hu moments, first, a pattern has to be created. Many unique patterns can be created to
compute the Hu moments of, but all of them should adhere to some constraints. One main star needs to
be chosen, which gets associated with the unique Hu moments of this pattern. At least one additional
star, preferable more, have to be selected to form a unique pattern. These added stars should be close
to the main star, since otherwise they could be outside the FOV in case the main star is close to the
edges of the image. Though, there is a trade-off for the number of added stars. More added stars contain
additional information, which helps in the identification. On the other hand, they require more storage
and computational resources, and if one star is missing, the entire pattern may become unusable. The
most obvious choice for them are the closest neighbors of the main star. Ergo, the pattern should consist
out of a central star and a number of n neighbors around it. Furthermore, the pattern itself must be
able to be constructed regardless of the position and rotation of the stars. The pattern proposed here
contains the positions of the central star and its n neighbors. Additionally, lines are drawn from the
central star to each of its neighbors. The line has to be sampled to be used as pattern. Three sampling
types are explored here: linear sampling, quadratic sampling, and inverse quadratic sampling. A visual
comparison between the three different sampling methods can be seen in Figure 1. The used patterns
consist out of the coordinates of the central star, the coordinates of its n neighbors and the points of
the sampled lines between them. While the brightness of a star could also be included in the pattern, it
is often neglected, since a precise measurement of it is difficult to achieve with a star tracker. On the
contrary, the measurement of the position of the stars is more reliable and accurate [10]. Computing the
Hu moments starts by computing the raw moments defined by equation (1).

Mpq =
∑

x

∑
y

xpyqI (x, y) (1)
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(a) Linear sampled lines. (b) Quadratic sampled lines.
An emphasis is put on the
central star.

(c) Inverse quadratic sampled
lines. An emphasis is put on
the neighboring stars.

Figure 1: Three different, possible samplings of a line to emphasize different parts of the formed pattern.

The raw moment Mpq has the order (p + q) and adds up the coordinates of each point (x, y) and its
intensity I (x, y). For the presented patterns, this is the sum over all points in the pattern. The intensity
of each point is always I (x, y) = 1. The raw moments can be used to compute the center of the
pattern

(
x̄ = M10

M00
, ȳ = M01

M00

)
. After the raw moments, the central moments µpq need to be computed with

equation (2).

µpq =
∑

x

∑
y

(x − x̄)p(y − ȳ)qf(x, y) (2)

By subtracting the center of the pattern, the central moments are invariant to translation. Hu proposed
a specific combination of central moments to also achieve rotation-invariance. The seven Hu moments
I1...I7 can be calculated using equation (3).

I1 = µ20 + µ02 I5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ21 + µ03)2]
I2 = (µ20 − µ02)2 + 4µ2

11 + (3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)2 − (µ21 + µ03)2]
I3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2 I6 = (µ20 − µ02)[(µ30 + µ12)2 − (µ21 + µ03)2] + 4µ11(µ30 + µ12)(µ21 + µ03)
I4 = (µ30 + µ12)2 + (µ21 + µ03)2 I7 = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ21 + µ03)2]

− (µ30 − 3µ12)(µ21 + µ03)[3(µ30 + µ12)2 − (µ21 + µ03)2]
(3)

Since the Hu moments can have a large variation in magnitude, they are transformed to a logarithmic
scale hi = sign (Ii) log2 (|Ii|)

3.2 Complex Moments
Flusser [16] proposed using complex moments for pattern recognition, a generalization of rotation invariant
moments to higher orders, similar to Hu moments from section 3.1. Complex moments on their own have
yet to find widespread adoption, due to their similarity to Hu moments, and are often used alongside Hu
moments for higher orders [7, 17]. A complex moment cpq of order (p + q) is defined with equation (4),
similar to how the central moments are defined in equation (2). This makes them already translation
invariant.

cpq =
∑

x

∑
y

[(x − x̄) + i (y − ȳ)]p [(x − x̄) − i (y − ȳ)]q I (x, y) (4)

Here, i represents the imaginary unit. Flusser proves, that rotation invariance can be achieved using
complex moments with the following rule: For n ≥ 1 and for non-negative integers ki, pi and qi with
i = 1, ...n which combine to 0 according to equation (5), rotation invariance can be achieved through the
combination shown in equation (6).

n∑
i=1

ki (pi − qi) = 0 (5)
n∏

i=1
cki

piqi
(6)

An example of this rule would be c11, c20c02 or c20c2
12. For 2D pattern recognition, Flusser suggests using

the combinations of complex moments as seen in equation (7), up to the fourth order. Even higher order
moments could be constructed, but there is a trade-off between higher order moments to capture finer
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details, and lower order moments, which are less susceptible to noise.

C1 = c11 = I1 C5 = Re
[
c30c3

12
]

= I5 C9 = Im
[
c31c2

12
]

C2 = c21c12 = I4 C6 = Im
[
c30c3

12
]

= I7 C10 = Re
[
c40c4

12
]

C3 = Re
[
c20c2

12
]

= I6 C7 = c22 C11 = Im
[
c40c4

12
]

C4 = Im
[
c20c2

12
]

C8 = Re
[
c31c2

12
] (7)

As visible in equation (7), there are some similarities between the Hu moments and the complex moments
for pattern recognition. For star identification, the same steps as for Hu moments from section 3.1 are
performed. The identical pattern is constructed, but instead of computing the Hu moments, the complex
moments from equation (7) up to the desired order are calculated. The scaling is the same as for Hu
moments.

3.3 Zernike Moments
Teague [18] was the first one to suggest using orthogonal moments on the basis of orthogonal polynomials.
The orthogonal polynomials he chose were the Zernike polynomials, proposed by Zernike [19], since they
were invariant to rotation. Therefore, the name Zernike moments. Zernike moments were also used
successfully in different applications [14, 20, 21]. Zernike polynomials are a set of complex, orthogonal
polynomials, defined on the unit disk. The polynomials are only rotation-invariant. To also achieve
translation-invariance the pattern first needs to be centered on the image plane. Therefore, the central
star is positioned in the center of the image plane and the neighbors are shifted accordingly. In the case
of star trackers, the same patterns are used as for Hu moments and complex moments in sections 3.1 and
3.2. For the Zernike polynomials to be used as image moments, the image plane first needs to transformed
into the unit disk [20]. To compute the Zernike moments, one starts off with the radial polynomial Rn,m,
defined in equation (8).

Rn,m (r) =
(n−|m|)/2∑

s=0
(−1)s (n − s)!

s!
(

n+|m|
2 − s

)
!
(

n−|m|
2 − s

)
!
rn−2s (8)

n is a non-negative integer and represents the order of the radial polynomial, m is a positive or negative
integer. m has to follow the constraints n − |m| = even and |m| ≤ n and represents the repetition of the
azimuthal angle. The radial polynomial of fixed order only depends on the radius r. To construct the
Zernike moments, the Zernike polynomials Vn,m(r, θ) = Rn,m(r)eiθm are defined in the unit disk with polar
coordinates using the radial polynomials Rn,m(r). The Zernike moments sum over the Zernike polynomial
for every point in the pattern of size λ and normalize them, which can be seen in equation (9).

Zn,m = n + 1
λ

∑
x

∑
y

I(x, y)V ∗
n,m(r(x, y), θ(x, y)) = n + 1

λ

∑
x

∑
y

I(x, y)Rn,m (r(x, y)) e−iθ(x,y)m (9)

V ∗
n,m is the complex conjugate of the Zernike polynomial. For the identification of the pattern, the

magnitude of the complex Zernike moment from equation (9) has to be taken to achieve rotation-invariance,
and it gets converted to logarithmic scale using the logarithm of basis 2.

As a variation to the original Zernike polynomials, Bhatia and Wolf [22] proposed the so-called pseudo
Zernike polynomials. They should be more resilient to noise, according to Otiniano-Rodrıguez et al. [14].
The difference lies in a modified radial polynomial Rp

n,m, which can be seen in equation (10).

Rp
n,m =

n−|m|∑
s=0

(−1)s (2n + 1 − s)!
s! (n − |m| − s)! (n + |m| − s + 1)!r

n−s (10)

For the pseudo Zernike moments, n is still a non-negative integer, but m can be a positive or negative
integer, only constraint by |m| ≤ n.

3.4 Fourier Descriptors
Fourier descriptors are used to identify shapes with a closed contour and were first proposed by Cos-
griff [23]. They also provide translation-, scale- and rotation-invariance like the other presented methods,
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and thus they are a good choice for pattern recognition. Their main difference is that they work on
the contour of the pattern instead of the pattern itself. However, they still found widespread adop-
tion for shape identification [5, 24, 25]. For the application of Fourier descriptors to star trackers,
a contour pattern needs to be created. Starting with a central star, its n closest neighbor are se-
lected. Then, a line is drawn, starting from the central star, going to the closest neighbor. The
line continues from the closest neighbor to the second-closest neighbor and so on. To close the con-
tour, the last line segment goes from the most distant of the n neighbors back to the central star.
For processing, the lines need to be sampled in regular intervals, which can be seen in Figure 2.

Figure 2: Sampled contour pattern used
for Fourier descriptors. The blue dot
is the central star and the orange ones
the n = 4 neighboring stars.

To compute the Fourier descriptors, the discrete Fourier trans-
formation is applied to the sampled points, which can be seen
in equation (11).

fk =
N−1∑
j=0

(xj + iyj) exp
(

−2πijk

N

)
(11)

This results in N complex Fourier coefficients fk, k = 0, ..., N − 1
for N sampled points in the contour pattern. xj and yj are
the coordinates of these points. f0 only contains the position
of the pattern, and can therefore be discarded. When taking
the magnitude of the complex Fourier coefficients, they become
invariant to rotation, since a rotation only effects the phase of the
coefficient according to Conseil et al. [5]. Scale invariance can be
achieved by normalizing the coefficients Fk = |fk|

|f1| , k = 2, ..., N −1
with f1. While the invariance to scaling is not needed for star
trackers, the normalization improves their resilience to noise, and

is therefore still used here. This results in the normalized Fourier descriptors Fk, k = 2, ..., N − 1 being
used here. Even though there are N − 2 Fourier descriptors available, often only a subset of them is used
for pattern recognition. There is a trade-off between capturing more details using higher order Fourier
descriptors and their resilience to noise, which increases for lower order descriptors.

4 Evaluation
To evaluate the star tracker’s performance over the entire sky, a Monte-Carlo simulation is used, sampling
10000 random spacecraft attitudes. For each sampled position, a simulated star image is generated,
including noise and one disturbance star. A disturbance star is a star which was deleted, moved or added
randomly, to account for occlusions or falsely classified stars. The new star identification algorithms
are tested first using the ideal positions of the stars in the image with added noise to it. Then, in a
full star tracker algorithm, where the stars have to be extracted from the image first and after their
identification the attitude is computed and finally the same test is performed on real images. The five
presented star identification methods have various parameters which influence their performance. These
parameters were optimized by hand through trial and error. This results in them possibly not representing
the optimal solution, since the parameter space is large or even infinitely large for same techniques. The
final parameters selected for the test can be seen in Table 1. Knowing the selected parameters allows one

Method Identifiers
Number of
stars in
the pattern

Line interpola-
tion method

Number of
samples per
line

Hu moments h1...h7 3 quadratic 2
Complex moments C1...C6 3 quadratic 2

Zernike moments Z3,1, Z4,2, Z8,0,
Z8,4, Z9,3, Z10,0

3 inverse quadratic 2

pseudo
Zernike moments

Zp
3,1, Zp

4,1, Zp
5,1,

Zp
6,1, Zp

7,2, Zp
8,2,

Zp
9,2, Zp

10,2, Zp
10,3

3 inverse quadratic 2

Fourier descriptors F2...F4 3 linear 5

Table 1: Selected parameters for the star identification algorithms.
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(a) Percentage of correctly identified stars under various
levels of added noise.
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(b) Percentage of identified stars in the image under
various levels of added noise.

to directly estimated the memory requirements of each technique, since the many differentiating factor is
the number of identifiers which need to be stored. Fourier descriptros only require 3 identifiers, where as
complex moments and Zernike moments need 6, Hu moments 7 and psuedo Zernike moments 9.

4.1 Simulated Star Positions
Evaluating the new algorithms purely on their input data, the star positions, is essential to characterizes
their performance. Noise is added to the ideal positions through a zero-mean circular Gaussian distribution.
Two separate metrics are presented here: the percentage of correctly identified stars 3a and the percentage
of identified stars in the image 3b. The first one shows, that, if a star is identified in the image, all
techniques have an accuracy above 99.9% under various levels of added noise. However, when the second
metric is considered, one sees, that fewer stars in the image get identified with increasing noise. This is
relevant, when computing the attitude, as one will see in the next section 4.2. Additionally, there is now a
clear distinction between the performances of the different algorithms. The reference method from Liebe
identifies the most stars, closely followed by Fourier Descriptors. At higher levels of noise, both fall behind
Hu moments and complex moments, and later even Zernike moments.

4.2 Simulated Images
In this test the stars first need to be extracted from the image and their position needs to be determined.
Only then, the star identification can be performed and afterwards the attitude is computed. All
performance metrics can be seen in Table 2. All six different star identification algorithms achieve similar

Star identification
algorithm

Mean angular
deviation [arcsec]

Dropped
results [%]

Average
runtime [ms]

Hu moments −0.227421 ± 9.42965 0.01 1.35731
Complex moments −0.227648 ± 9.49849 0.02 1.59177
Zernike moments −0.237213 ± 11.0216 0.02 1.70367
pseudo Zernike moments −0.24811 ± 10.0752 0.01 1.94534
Fourier descriptors −0.229222 ± 9.26181 0.01 1.31561
Liebe −0.211116 ± 9.01989 0.01 1.3036

Table 2: Performance of the complete system on simulated images for different star identification algorithms.
arcsecond accuracy. However, there are small differences between them. The order is identical to the
previous test at low levels of added noise, with Liebe’s triangle being the most accurate one, closely
followed by Fourier descriptors. Hu moments and complex moments perform almost identically, with
Hu moments slightly ahead of complex moments. Pseudo Zernike moments are behind the two, and
Zernike moments are the worst in terms of standard deviation. Out of the 10000 tested attitudes, most
algorithms only dropped a single image. Only complex moments and Zernike moments dropped two
images. The average runtime for the different star identification methods can also be seen in Table 2.
They are meassured on an Intel i9-9900K, which is more powerful than the typical processor in a star
tracker. Thus, the runtimes only depict relative performance differences between the techniques. Liebe’s
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triangle method is the fastest, closely followed by Fourier descriptors. Behind them are Hu moments and
then complex moments. Zernike moments are the slowest, with the pseudo Zernike moments being slower
than the classical Zernike moments.

4.3 Real Images
To verify the performance of the star tracker not only on simulated images, real images were also used. A
total of 63 images covering most parts of the Northern Hemisphere with arbitrary rotations were captured
using a camera. The reference attitude for each image was determined using Astrometry.net [26]. The
results of it can be seen in Table 3. In contrast to the previous test, Hu moments, complex moments

Star identification algorithm Mean angular deviation [deg] Failed
identifications [%]

Hu moments −0.0522763 ± 0.101105 4.76
Complex moments −0.0517002 ± 0.101513 4.76
Zernike moments −0.162016 ± 0.728742 17.46
pseudo Zernike moments −0.0573003 ± 0.0995736 7.94
Fourier descriptors −0.11398 ± 0.388429 1.59
Liebe −0.0577865 ± 0.0986445 1.59

Table 3: Performance of the complete system on real images for different star identification algorithms.
and pseudo Zernike moments have a higher accuracy than Fourier descriptors. Only in terms of failed
identifications do Fourier descriptors have a slight advantage over the other techniques. Zernike moments
perform the worst, and Liebe’s triangle the best in both metrics. The magnitude of the deviation is
significantly higher than in the simulated test. This has various reasons: It is unknown how accurate the
reference attitude determined by Astrometry.net is and how large the error is. Ground-based observations
are always influenced by the atmosphere. It dims the light from the stars and adds disturbances to the
image through the motion of the air. Furthermore, there is the problem of light pollution caused by
artificial lights of nearby cities which limits the visibility of the stars further. All effects also change with
the cameras orientation and how close its FOV is to the horizon. Taking all these effects into account, the
performances of the different algorithms are within the expected range.

5 Conclusion
This work showed that Hu moments, complex moments, (pseudo) Zernike moments and Fourier descriptors
can be used for star identification in a star tracker. First it was discussed how a suitable pattern can
be created from the stars in the image and what criterions should be met. After fitting patterns were
created, it is shown how Hu moments can be used to identify these patterns. The same concepts are then
also applied to complex moments, Zernike moments and Fourier descriptors. For the Fourier descriptors,
a variation of the star pattern is created. All algorithms achieve similar accuracies, but they differ in
how many stars are correctly identified. Fourier descriptors fall shortly behind the reference algorithm in
terms of accuracy, and match it in speed and memory requirements. Hu moments and complex moments
perform slightly worse than Fourier descriptors in every metric. They also come with higher memory
requirements. Compared to the similar complex moments, Hu moments always have a minute advantage.
Zernike moments can use different radial polynomials. In their original form the accuracy is the worst
out of all presented methods. This can be improved by using the pseudo radial polynomial, however,
more identifiers are necessary to achieve this, which increases processing time and storage requirements.
Regardless of the used radial polynomial, Zernike moments always fall behind the other methods. The
lead of Liebe’s triangles and Fourier descriptors is lost at higher levels of position noise. All methods were
also able to accurately identify the stars in real images. While none of the newly presented techniques offer
significant advantages compared to the already established algorithms, the application of knowledge from
the field of pattern recognition to star trackers is an interesting idea worthwhile investigating.
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