
Avionics for HyMOVE
A Modular Orbital Transportation System for Small Satellites ∗

Sergio Montenegro1, Michael Strohmeier1, Paola Breda2, and Michael Vogel2

1Department of Aerospace Computer Science, Würzburg University
2HyImpulse Technologies GmbH

February 14, 2023

Contact: sergio.montenegro@uni-wuerzburg.de
Presentation will be performed by: Sergio Montenegro
Topics: 1.1. Software architectures and frameworks, 4.3. Data controllers, bus and micro-controllers,
4.4. Operating System (OS) front-ends, 5.4. System specific OBC solutions

1 Introduction
Within HyMOVE (”Hybrid Multipurpose Orbital Vehicle”), HyImpulse Technologies GmbH (HIT)
and Julius-Maximilians-University Würzburg (JMUW) are developing an orbital vehicle, which can be
adapted to a diverse set of mission scopes, thanks to its modular architecture. This modularity stems
from the standardization of parts, and thereby to a reduction of cost as general industrial practices
like serial production can be adopted into the space industry.

Next to this flexibility, one of the core technologies of the HyMOVE vehicle lies in the utilization
of hybrid rocket propulsion, which is defined as the type of rocket propulsion that uses both solid and
liquid components. This yields several advantages compared to both liquid and solid propulsion, key
among which are safety and simplicity at high Isp-performance [1]. Unlike solid propulsion, hybrid
rocket motors are both reignitable and throttleable, allowing for more complex missions to be executed
based on this type of engine. Hybrid propulsion has historically been plagued by low thrust densities,
an issue which has been overcome due to the advent of liquefying fuels. Among these, paraffin has
been the fuel of choice for HIT’s propulsion developments, but the baseline choice of oxidizer used in
HIT’s other projects (liquid oxygen) is unfit for an in-space application due to its cryogenic nature.
Instead, alternatives for oxidizers are currently under investigation, specifically ”green” oxidizers like
hydrogen peroxide (H2O2) or nitrous oxide (N2O), to complement the already non-toxic and soon to
be carbon-neutral paraffin fuel.

JMUW develops the corresponding highly modular, scalable, and reliable avionics systems. Hy-
MOVE is intended to have a modular design, so that the technology can be adapted for a wide variety
of applications. For HyMOVE, very high dependability is needed and if the system remains in orbit
for extended periods, then also very high reliability: Fault tolerant control (software and hardware),
radiation resistant hardware and real-time critical tasks/control. In order to achieve high reliability in
a very compact and very high-performance components-off-the-shelf (COTS) package, we will evaluate
the use of SOI (Silicon on Isolation) Technology. This technology is most promising for this application
due to its lower power consumption and superior radiation tolerance compared to CMOS (Comple-
mentary metal oxide semiconductor) components. The software includes the real-time kernel, software
infrastructure, communications middleware from our building blocks execution platform RODOS, and
further key applications for satellite and kick-stage operations. Our fault tolerance mechanism is based
on an ”ultra-fast recovery” system. The goal is for each computer to take less than a second to reboot
and start all applications. This allows the hardware to rapidly rejoin the network after a crash and

∗Thanks to the financial support from Bayerischen Staatsministeriums für Wirtschaft

1

mailto:sergio.montenegro@uni-wuerzburg.de


retake control of critical tasks. Beyond this recovery technique, important functions are also repli-
cated in the network several times in different nodes so that a crash does not jeopardize the flight.
While novel, we are confident in the successful implementation of our ”ultra-fast recovery” concept as
described.

1.1 Hardware
All Hardware is implemented as dual-X (X: controller, router, connections, switches, etc.) for fault
tolerance, meaning every basic hardware unit is duplicated, as shown in Figure 1. The system consists
of two parallel running Time Triggered Ethernet networks. Every controller, e.g. the dual-board
computer or dual-payload computer or dual-GNC Computer, has two interfaces to the network, one
for each router. Hence, each Dual-X is implemented with a total of four links to the dual-network.

Figure 1: HyMOVE Avionic Hardware

Figure 2 shows the implementation of each dual computer (eg. dual board computer, dual payload
computer and dual GNC computer). Described in some further detail below are the following two
aspects of hte system:

1. IO Adapter

2. Keep-off

1.1.1 IO Adapter

About the IO Adapter: As there is only one standardized dual computer configuration, an IO adapter
module shall be used to achieve the necessary functionality for various payloads and mission types.

2



Figure 2: HyMOVE Dual Computer

The computer will interface with the IO adapter through a standardized IO connector to achieve high
modularity and interoperability. The IO adapter can therefore readily be re-implemented for unique
IO configurations without a substantial redesign of the dual computer.

1.1.2 Keep-Off

About Keep-Off: With the Keep-Off circuit we implement simple yet flexible redundancy manage-
ment. The redundancy management is completely controlled by software, allowing for straightforward
switching between hot and cold redundancy. Each node has a so called Watchdog Application. The
watchdog application checks the timings and proper behavior of all other applications and devices on
the computer. If everything seems to be working appropriately, it will send a pulse to the keep-off cir-
cuit of the other computer. If a computer crashes, its watchdog application will notice the interruption
of its processes and stop sending the keep-off pulse, forcing the other computer to be turned on and
take over the tasks and processes. As long as one computer (the worker) keeps sending a pulse to the
keep-off circuit of the other computer (spare), the spare computer will remain off. If the pulse does not
arrive within the set time period, the spare computer will become active and take control (become the
worker) after completing its startup self-check. Once operating, the new control computer (previously
spare) will send the keep-off signal, forcing the other computer to become the cold spare.

1.2 Software
We implement the control software ”by construction based on building blocks (BB)” within the BB-
execution Platform RODOS. RODOS is a dependable distributed real time operating system. RODOS
provides a real time micro kernel and a distributed Publisher-Subscriber Middleware. Applications
distribute messages by publishing on topics. The middleware will distribute the message to all sub-
scribers of a topic in the system, independently of its position. For the publisher it is discernable
if the communication partner is running in the same computer or on another computer attached to
the network. It is even possible to build distributed systems, in which one part is running in the
spacecraft and another on the ground segment. Even these physical divisions of the system will be
discernable in the publisher-subscriber communication. This allows for the dynamic distribution of ap-
plications among networked computers, simplifying the fault tolerance and redundancy management.
Applications are then the Building Blocks (like chips on hardware), which will be interconnected by
the middleware (like on a printed circuit board) as depicted in Figure 3. On a larger scale, complex
software can then simply be ”assembled” using the various BBs, without elaborate consideration of
the internal structure of each BB.

Figure 3 shows a typical BB (applications) and topics configuration for a spacecraft. Details will
be explained in the full paper.

Figure 4 shows a typical BB (applications) and topics configuration for a spacecraft. Details will
be explained in the full paper.

3



Figure 3: Building Blocks on RODOS BB-Execution Platform

Figure 4: Typical BB and Topics configuration

References
[1] E. Messerschmid and S. Fasoulas. Raumfahrtsysteme, propulsion. In Raumfahrtsysteme, 2000.

4


	Introduction
	Hardware
	IO Adapter
	Keep-Off

	Software


