Resource sharing, communication and control for fractionated
spacecraft (YETE)

T. Mikschl* S. Montenegro* A. Hilgarth* F. Kempf**
K. Schilling** T. Tzschichholz***

* Department of Computer Science VIII : Aerospace Information Technology,
University of Wiirzburg, Germany

**Department of Computer Science VII : Robotics and Telematics,
University of Wiirzburg, Germany

*4% Zentrum fiir Telematik e.V., D-97218 Gerbrunn, Germany

Abstract

Modern spacecraft data handling systems are assembled of many highly specialized computer
nodes, which are responsible for single subsystems. In this paper we want to present a more
modular and distributed approach, in which computing power is shared among a network of
computing nodes. Using wireless data links in this network of sensors, actuators and computing
nodes enables flexibility and reliability regarding formations of various spacecraft. Furthermore
wireless data connections enable not only intra-satellite, but also inter-satellite sharing of
subsystems and computing power. As wireless links bring many constraints in regard of data link
quality like delays and packet loss, we first simulate the distributed system with its various
parameters.

1. Introduction

A system design decision for modern spacecraft (satellites, rovers, etc.) concerns the architecture of
a robust on-board data handling (OBDH) and resource management in a mission. A common
approach for OBDH is to use several specialized subsystem computers in parallel for the individual
tasks, i.e. for sensor data post-processing and to hardwire the communication network of the
individual subsystems of the spacecraft. These subsystems are then controlled by one or more
redundant general purpose computing units (GPUs). One drawback of this centralized approach is
that computing resources of the specialized subsystem computers cannot be shared among other
subsystems or other spacecraft in a mission, which results in wasted computing resources.
Furthermore should all GPUs fail, all still working spacecraft subsystems are lost for the mission.

2. YETE Overview

The fractionated spacecraft approach we present (YETE) addresses a distributed data processing
concept with strong emphasis on modularity at hardware and software level.

s

Ground Station

Satellit/ Rover 1

Satellit / Rover 2

‘sl 'ag
! I

Computer Node Computer Node

Computing Cluster‘:
i

‘aed
!

Computer Node

g
I

Computer Node

‘al
I

Computer Node

Computing Cluster‘}
1

‘e
!

Computer Node

eeeee

Senorik /Aktuatorik‘{
|

Senorik /Aktuatoriki
i

Figure 1: The YETE concept: Wireless links are used to connect a cluster of computing nodes to
very simple sensors/ actuators. All sensor- or actuator-specific processing now takes place in one
or more computing nodes.

On the hardware level all spacecraft subsystems (sensors, actuators, computing units, etc.) are
treated as independent nodes, interconnected via low power short range wireless links. Most device
specific computations are performed on general purpose computer nodes, which form a computing
cluster. Additional long range wireless links allow the space vehicle to use the computing resources,
sensors and actuators of other space vehicles and to share its own.

On the software level all functional software units, i.e. I/O drivers or applications, are encapsulated
into independent "Building Blocks (BB)". They can easily be added or removed allowing fast re-
configuration of the software system to changing mission conditions. Intra-/inter vehicle
communication, task distribution and task execution is handled by the middleware OS RODOS [1]
which runs natively on all nodes in the spacecraft.

To perform tests of inter-/intra- / spacecraft-to-Mission Control Center (MCC) communication and
system behaviour under controlled transmission channel conditions in different spacecraft
networks/constellations, we simulate all communication inside the Omnet++ simulation framework.
This also speeds up the development cycle of our YETE hardware demonstration platform. The
software link-interface we created between RODOS and Omnet++ is transparent to all BBs inside a
node and can be exchanged by real communication hardware (Bluetooth Low Energy, Wifi, etc.)
later on. Results for different routing algorithms (DSR, AODV), protocols (DTNs) and simulated
RF-hardware are presented and discussed.

Distributed control of spacecraft in YETE is done in Simulink running as a RODOS task. The
control performance under varying communication conditions (delays, bit-error-rate, etc.) and a
unified (model and controller on the same node) vs. a separated control concept is discussed.

3. Communication Simulation

With YETE being a highly distributed concept, communication between the individual system
nodes plays a major role in the overall system behavior. The transmission channel properties, such
as delay, bit error rate or packet loss greatly influence the ability to perform distributed system
control and the way in which tasks can be distributed or shared among nodes in the network.
Therefore, to allow the testing of different control algorithms, task distribution concepts and RF link
hardware under controlled conditions, a communication simulation concept for YETE was
developed. We decided to use the discrete event simulator Omnet++ [2] as simulation environment.

link

i]
i |
i |
i |
I I
| |
| i
] |
' i
! i)
Publisher/Subscriber System [A 1
! - Hardware !
e e s s s s i - link !
I w ¢
& . : |
___ | Bl !
[- R
i RODOS Node| ! ol i v :
i | ; Satellite - !
i - oo MCC - i
!] | ! Rover Network !
: i —>» link rf (0] <—>» HAL TCP/IP | : | :
I e ink-interface Omnet++ in | &3
! - i RODOS GW Hardware E
: | |
i ! i

|
Publisher/Subscriber System i
|

Figure 1: Integration of Omnet++ into the RODOS node communication layer.

Integration of external real-time applications into Omnet++ has already been done before [3],
however none of the proposed concepts apply in this case. The reason is, that the external
application, RODOS in this case, will be running on several distributed nodes, some of which are
embedded devices. Therefore the link between the RODOS Operating System and the Omnet++
communication simulation consists of two parts, one is platform dependent and is running on the
RODOS side and one is platform independent and is running on the Omnet++ side. The
communication between the two parts is done via the TCP/IP protocol, preferably over an Ethernet
cable connection. The part on the RODOS side is implemented as a RODOS hardware link-
interface (omnetpp-linkinterface) over which RODOS topics can traverse. This link-interface can
later be exchanged by link-interfaces of real hardware, like one of a Ultra Wide Band (UWB) or
Bluetooth connection. This way the simulation appears transparent to the RODOS system and to the
other software Building Blocks (BBs) running on the node. On the Omnet++ side a RODOS
gateway module receives the topic data from one or more RODOS nodes via a two way tcp
connection and forwards the topics to exactly one simulated hardware link inside the simulation
environment. If the RODOS gateway module represents an intra-satellite link it also broadcasts a
special satellite state topic to selected modules inside the satellite module which need the current
satellite state, e.g. the satellite position or attitude, for their operation. One example for such a
module is the satellite mobility module, which updates the satellite position inside the visualization
map and which is also used in the signal strength calculations of the radio transmission links.

To facilitate realtime event processing and to handle new received RODOS data inside Omnet++ we
extended the realtime socket scheduler of Omnet++, so that between two scheduled events, it
performs a blocking select operation on the sockets of all RODOS gateways in the network and lets
them handle newly received topic data if a socket event occurred.

4. Simulink Integration

For facilitating the development of control algorithms and high-level tasks, we developed a
Simulink toolbox targeting RODOS applications. The toolbox consists of a support package (SP)
which basically contains the glue code and interfaces to RODOS, and the block library, which
provides specific interface blocks for connecting Simulink models with sensors or RODOS
internals.

We have chosen Simulink, since this allows us to re-use existing models and develop new models
very quickly. Also, this allows extending the models with other toolboxes and even interface to
more hardware, when required.

Depending on the application, the controller requires measurements at a specific rate. The sensor
responsible for these controller inputs must provide the samples at the required rate and send them
to the controller via the RODOS middleware.

Using our support package, code can be directly generated from Simulink, such that a standalone
binary is created containing a complete instance of RODOS and the model designed with Simulink.
Later on, this binary can be copied into the flash memory of a microprocessor and can then be run
on dedicated hardware.

The interface between the sensors, actuators and the model (i.e., the controller) is made by the
RODOS middleware and its publisher/ subscriber architecture.

5. Demonstrator

To demonstrate the capabilities of the distributed system, we implement it on a simulation vehicle
with sensors and actuators. Our goal was to replicate the systems of a satellite and its environment
as close as possible. However we have to adhere to several constraints, like the limited financial
resources and the space available.

The solution is a small vehicle, which uses on-board tanks with pressurized air and air pads to glide
frictionless on a small air-film. On the top layer of the vehicle our computation system is integrated,
consisting of the development boards combined with sensors and connected to the actuators.

The vehicle can be equipped with different sensors and actuators. For translation on a flat surface
small air thrusters are used. Rotation can be handled by a reaction wheel in the center. Various
sensor systems have been implemented on the hardware, for example a IMU with gyros and
accelerometer, as well as a star tracking cameras which uses a printed star catalog on the floor

as reference.

Acknowledgements

This project is funded by the DLR agency under grant no. S0RA 1332, what is gracefully
acknowledged.

References
[1] V. Petrovic S. Montenegro and G. Schoof. “Network Centric Systems for Space Application.”
In: IEEE conference SPACOM. 2010.

[2] Christoph P Mayer and Thomas Gamer. “Integrating real world applications into OMNeT-++.”
In: Institute of Telematics, University of Karlsruhe, Karlsruhe, Germany, Tech. Rep. TM-2008-2
(2008).

[3] Andras Varga. “OMNeT++.” In: Modeling and Tools for Network Simulation. Springer, 2010,
pp. 35-59.

