
Simulation-Based Testing of Software in Space
Applications

Dr. Sergio Montenegro 1, Prof. Stefan Jähnichen 1, Dr. Olaf Maibaum 2

1 TU-Berlin / Fraunhofer FIRST,
2 Deutsches Zentrum für Luft- und Raumfahrt e.V.
 Simulations- und Softwaretechnik
 Stefan.jaehnichen@first.fhg.de, sergio@first.fhg.de, Olaf.Maibaum@dlr.de

Abstract: This paper deals with the software-in-the-loop test approach be-
ing developed by the consortium project SiLEST (DLR, TU-Berlin, IAV,
FhG FIRST, Webdynamix). We present a layer structure of the control
loop that allows components of the environment simulation to be used for
hardware-in-the-loop and software-in-the-loop testing of embedded sys-
tems software. The approach is specifically designed to test software be-
haviour in disturbed operating conditions, such as in a harsh environment,
for example. In space applications, intensive radiation can corrupt compu-
tations and stored data. In addition, electronic devices such as sensors age
much faster than on earth so that changed sensor deviations must be ex-
pected. Much the same is true of numerous other embedded systems, e.g.
in automotive applications. Here, too, the electronic components are ex-
posed to extreme conditions (temperature) and are subject to ageing proc-
esses.

1. Introduction

The development work was motivated by difficulties encountered in test-
ing the BIRD satellite. BIRD is a technology demonstrator and a space fire
alarm (see Figure 1).

2 Jähnichen, Montenegro, Maibaum

Figure 1: BIRD in orbit

The BIRD microsatellite mission demonstrates the technical and pro-

grammatic feasibility of combining ambitious science and new – not yet
space-proven – advanced technologies under fixed budget constraints.
Demonstrating new microsatellite technologies is a key objective of the
BIRD mission. The technology experiments demonstrate the limitations
and advantages of the newly developed components and technologies. The
BIRD microsatellite (mass = 92 kg) was launched with the Indian PSLV-
C3 from Shar on 22 October 2001 into a sun-synchronous circular orbit at
an altitude of approx. 568 km. BIRD orbits the earth every 90 minutes,
scanning a 300 km-wide band. It is capable of detecting, analyzing and re-
porting fires of 8 sq m in size upwards. BIRD’s fire-detecting capabilities
exceed the most optimistic expectations. Since its launch, BIRD has func-
tioned with high reliability, despite some radiation-related problems and
hardware failures.

Most functions in BIRD are software-controlled using the real-time op-
erating system and middleware BOSS. BOSS was designed for space ap-
plications, in particular for dependability, safety and simplicity. Our aim
was (and is) to attain the greatest possible dependability of embedded sys-
tems by reducing development errors (through simplicity) and handling
runtime anomalies (by fault-tolerance support). The principles underlying
the construction of BOSS and its middleware were: design and build an ir-
reducibly complex system using modern framework technology for the
underlying operating system and component technology for the middle-
ware and its applications. The results are very promising. BOSS has been
in continuous use in space (BIRD satellite) and in medical devices for a

Simulation-Based Testing of Software in Space Applications 3

number of years now. Even complex functionality can be implemented
very easily using BOSS.

Ensuring BIRD’s correct functioning was a very difficult task, not only
because the functionality is largely implemented in software but also be-
cause BIRD makes use of numerous new technologies, making the test
phase particularly important and difficult. Some functions are not easy to
test on the earth: for instance, attitude control requires zero gravity and the
solar sensors need extremely high light intensity. For such cases, a highly
complex testbed was built (see figure 2). For future missions, it is planned
to reduce this complexity, though not at the expense of reliability. That is
why we are building a virtual simulation environment for satellites, which
can be used equally well for other embedded systems.

Figure 2: Testbed

2. Testing Adaptive Systems

The environmental conditions in many embedded systems are non-optimal.
In space applications, radiation is a problem, while earth-bound systems,
e.g. in the automotive sector, are subjected to cycles of heat and cold,
moisture and corrosion, vibrations, fouling and mechanical wear, which

4 Jähnichen, Montenegro, Maibaum

cause sensors and actuators to age. The software-implemented control sys-
tem must take this into account by using adaptive mechanisms to adapt to
gradually changing conditions. Such adaptive mechanisms may, for exam-
ple, involve adapting filters for sensor data or reconfiguring redundant sen-
sor networks, which will be essential for future X-by-wire systems and are
customary in space applications to extend the useful life of on-board sys-
tems.

Given the variety of ageing processes and failure events affecting sen-
sors and actuators and the high complexity of sensor networks, the testing
of these adaptive software mechanisms represents a considerable chal-
lenge. SiLEST will incorporate a “software-in-the-loop” (SiL) simulation
to test software behaviour in an aged system for the automotive and aero-
space application domains. “Software-in-the-loop” testing means that test-
ing of the real software – including all restrictions with regard to resources
– is carried out in a simulated environment or using experimental hard-
ware.

Furthermore, the process of developing embedded software systems in a
technical environment with high correctness, safety and robustness re-
quirements often accounts for approx. 50-80% of the total development ef-
fort in the verification and validation phases [RB02]. Despite this consid-
erable effort for testing software, potentially fatal software errors continue
to be common occurrences. By seeking to improve the test process for
embedded systems, SiLEST promises to reduce development effort and in-
crease the reliability of embedded software systems.

3. From Real Devices to Software-in-the-Loop

In addition to classical functional and module testing, embedded systems
software must also be tested in the complete controller loop including tar-
get hardware and target devices (see Figure 3).

Figure 3: Control software in a real device

Simulation-Based Testing of Software in Space Applications 5

Embedded systems software is an integral part of this loop and cannot
be considered separately from it. Every output of the software in the loop
triggers feedback on the sensor data. This must be taken into account when
testing embedded systems software. The conventional approach to testing
embedded systems using simulation is the HiL (Hardware-in-the-Loop)
test (see Figure 4)

Figure 4: Hardware-in-the-loop

This approach uses laboratory prototypes of the technical system under

test or simulations. Testing using a laboratory prototype is highly cost-
intensive and can only be carried out at a very late stage in the develop-
ment process because the relevant system hardware has to be available for
testing. Simulation testing involves simulating the environment, the sen-
sors and the actuators of the system being tested. The sensors’ and actua-
tors’ simulation is coupled via the processor board’s hardware interfaces
and special VME or PCI interface cards (a complex business).

The HiL test approach has a number of drawbacks. The hardware
needed for the test setup is not normally available until late on in the de-
velopment process, and often then there is only a single specimen of the
Hardware Simulator, which is very expensive. This makes the test setup
cost-intensive and laboratory-bound. The coupling of the simulation and
the embedded system makes it difficult to keep a consistent check on the
state of the software and the environment. This, in turn, makes it hard to
diagnose errors in the embedded system.

Our alternative to HiL testing is to use a SiL (Software-in-the-Loop) test
approach. With this approach, the system under test and the environment
simulation are coupled via a single communication connection (e.g.
Ethernet) (see Figure 5).

6 Jähnichen, Montenegro, Maibaum

Figure 5: Software-in-the-loop

The SiL test approach enables the in-circuit test harness to be dispensed
with and means that the testing is no longer laboratory-bound. And with no
need for special hardware, testing can begin early on in the development
process. The only essential requirement for testing is a controller approxi-
mately corresponding to that in the final product in terms of temporal be-
haviour and storage capacity and a simulation computer. By dispensing
with hardware interfaces, SiL testing allows close coupling of the envi-
ronment simulation and the system under test. This coupling method en-
ables a consistent state of the simulation and the software under test to be
achieved, which can be used for error diagnosis and as an initial state for
further test runs. Figure 6 shows the simulation possibilities for different
test approaches.

Figure 6: Test approaches

Simulation-Based Testing of Software in Space Applications 7

4. Our SiL Approach

We aim to replace the real environment of the embedded software by a
simulation, without the embedded software being aware of this (see Figure
7). In a real system, the operating system executes I/O accesses using the
corresponding I/O drivers. Our SiL approach dispenses with I/O devices
and drivers altogether. Instead, all I/O accesses are converted to UDP
messages (a simple Internet protocol), which are sent by Ethernet (ETH) to
a remote simulator. The simulator computes the environment reaction and
returns the simulated environment conditions, also using UDP messages
too.

Figure 7: Embedded software for the SiL test

The biggest problem faced here is the system’s time behaviour. HiL

simulations must run in real time, which makes the simulator highly com-
plex and expensive. Our SiL simulation does not run in real time, but the
embedded software is not aware of any time delays, caused by the UDP
communication and simulation steps. This is the challenge confronting us.

To the embedded software, the system appears to run in real time. To
achieve this, the operating system (BOSS) was extended by the addition of
a virtual time manager, which can freeze the time and all software activity
while UPD communication and synchronization is under way. This means
that the virtual time is not continuous. The system has two notions of time:
virtual/simulation time and real time (see Figure 8). The virtual time of
the embedded software has to be synchronized with the simulation time
(they should be the same) in such a way that to the embedded software the
simulation time appears to be real and continuous. By contrast, the (real)
real time is that perceived by an external observer. Since the simulation
runs slower than the real world, the time of the embedded system runs

8 Jähnichen, Montenegro, Maibaum

faster than the real time. To keep them synchronized, the virtual time has
to be stopped every time the embedded software tries to access the external
(simulated) world.

Figure 8: Two notions of time

To synchronize the virtual time and data in the embedded software with

the simulation time and data in the simulator, we introduced a communica-
tion protocol which combines data transfer and time synchronizations, as
shown in Figure 9.

Figure 9: SiLEST synchronization protocol

Simulation-Based Testing of Software in Space Applications 9

The simulator begins the the simulation and continues until a time point
(let us call it T0) at which it detects an asynchronous signal (data) going to
the embedded controller. This might be, say, certain conditions generating
an interrupt in the controller. The simulator thus knows when it will inter-
rupt the controller, but it does not know when the controller will access
data from I/O devices. The simulator allows the controller to run until a
determined time point (message "Run Until(T0)" in Figure 9). The con-
troller runs until T0 at the most, at which point the virtual time manager
stops the time and all other software activities in the embedded controller.
It reports the time to the simulator and waits for further instructions. At
this point, the simulator transfers data to the controller. The simulator then
gives the clearance to continue running until T1 (message "Run Un-
til(T1)"). If, before this time point is reached, the embedded software at-
tempts to access an I/O device (this is mostly the case), the virtual time
manager again stops the virtual time and all other software activities, and
then reports the time and the I/O access data to the simulator. The simula-
tor receives the data and eventually it has to perform a rollback to the last
checkpoint and resimulate until T0.1, which is before T1. At this point, a
bidirectional data transfer is carried out to synchronize data and time. After
these synchronizations, the simulator gives the clearance to continue until
the next asynchronous signal – T2 in Figure 9 – which may still be the
same as T1.

According to this protocol, there are two reasons for stopping the virtual
time: I/O access and the reaching of the maximal simulation step given by
the simulator.

5. Conclusions and Outlook

The SiL test approach presented here dispenses with the need for special-
ized hardware, making it suitable for deployment early on in the develop-
ment process. Also, its use of synchronization between the controller and
the simulation makes it possible to take a more precise look at the state of
the software than is possible by an HiL test environment. Debugging po-
tential in particular is enhanced by the ability to execute the software and
simulation in steps. The chosen approach also makes it possible to obtain
consistent states of the environment and the software under test. The well-
defined layer structure of the simulation environment allows a library of
simulation modules to be compiled, which can be used for HiL/SiL tests
and, at the same time, is suitable for cross-project application. This enables
costs to be cut during test preparation.

10 Jähnichen, Montenegro, Maibaum

The SiL test’s practical potential and limitations will only become evi-

dent towards the end of the SiLEST project, when the test process is tried
out on software from the automotive and aerospace application domains.
At present, it can safely be stated that real-life and HiL testing cannot be
completely replaced by SiL testing because previous experience has shown
that simulation and reality always differ. However, much of the environ-
ment simulation used in SiL testing will also be suitable for use in HiL
tests and the flexibility offered by a totally software-implemented test en-
vironment will outweigh the drawback of the additional effort required by
early error detection and the improved debugging options.

6. Recommended further literature and references

Briess K, Baerwald W, Gill E, Halle W, Kayal H, Montenbruck O, Monte-
negro S (2003) Technology demonstration by the bird-mission, ISBN
3-89685-569-7

Kumar K, Goswami, Ravishankar K (1993) Simulation of Software Be-
haviour Under Hardware Faults. Proc. of the 23rd Int. Symp. on Fault
Tolerant Computing. 1993. pp. 218-227.

Poncet, JC (2000) Using Simulation to Design Real Time Applications. In
Simulation in Industry'2000, 12th European Simulation Symposium
2000. Ed. D.P.F. Möller. Hamburg, Sep. 2000. pp. 43-47

Raguideau J, Schoen D, Henry J (1994) an Event-Driven Simulation Tool
for Testing Software. In 5th Int. Symp. on Software Reliability Engi-
neering. 1994. pp. 259-263.

SILEST Web presentation: www.silest.de
Zimbelman D, Anderson M, Correl T, Schnurr R, Fennel M (1996) The

Attitude Control System Test-Bed for SWAS and future SMEX Mis-
sions. In Guidance and Control. 1996. V. 92. pp. 145-163

