
Assessment of the Resilience Concept by means of the HiPeRCAR Simulator

 Pasquale A. Marra (1) (pasquale.marra@aleniaspazio.it)
 Daniel Akuatse (2) (daniel.akuatse@syderal.ch)
 Emily Crudo (3) (emily.crudo@galileoavionica.it)
 Flavio Fusco (3) (flavio.fusco@galileoavionica.it)
 Sergio Montenegro (4) (sergio.montenegro@first.fraunhofer.de)
 Raffaele Vitulli (5) (raffaele.vitulli@esa.int)

(1) Alcatel Alenia Space Italia, SS Padana Superiore, 290 - 20090 Vimodrone (MI), Italy
(2) Syderal S.A., Neuenburgstrasse 7 - 3238-Gals (BE), Switzerland
(3) Galileo Avionica SpA, Via Montefeltro, 8 - 20156 Milano, Italy
(4) FIRST, Kekuléstraße 7 - 12489 Berlin, Germany
(5) ESA/ESTEC, Keplerlaan 1, Postbus 299 - 2200 AG Noordwijk, The Netherlands

INTRODUCTION
Dependability, a combination of availability, reliability and safety, wants to be the characteristic of
the HiPeRCAR system. The ESA-funded project HiPeRCAR (High Performance Resilient Computer
for Autonomous Robotics) shows how to combine reliability and robustness in an optimal way to
get the highest possible dependability using limited resources.
The achieved dependability allows to design a robotic system with suitable computational power for
Space.
Keywords: robotics, fault-tolerance, dependability, robustness, resilience, middleware, FDIR.

1. THE HiPeRCAR SYSTEM

HiPeRCAR is a system inspired to the “MOSREM” concept by ESA [1], which places radiation-
hardened nodes as front-end of a pool of high-performance shear nodes based on industrial
processors: the front-end computer provides reliability and continuity to the services; the back-end
pool of COTS nodes provides processing power [2].

HiPeRCAR (Fig. 1) combines in a system radiation hardened components with 300-MIPS COTS
computers in order to provide the required power to a robotic system in Space.

Fig. 1 – HiPeRCAR System

By mixing Space technology and
industrial technology, HiPeRCAR is able
to offer massive computation-power for
trajectory computations, 3-D translations,
image elaborations, and so on, and also
autonomy and reliability degree to the
exploration missions.

A modular design eases the expansion of
the system also by introducing additional
COTS or redundancy capability. A low-
latency high-speed SpaceWire network, a
data storing facility and robotic bus
controller provide the logistic support to
the whole system.

mailto:pasquale.marra@aleniaspazio.it
mailto:daniel.akuatse@syderal.ch
mailto:emily.crudo@galileoavionica.it
mailto:flavio.fusco@galileoavionica.it
mailto:sergio.montenegro@first.fraunhofer.de
mailto:raffaele.vitulli@esa.int

2. THE HiPeRCAR PROJECT

A consortium of European companies lead by AAS-I (Laben) is trying to demonstrate that this goal
can be achieved under the ESA contract ITT/1-4607/04/NL/AG.

A first design phase provided the major design features of a possible payload controller system for
Space [3]. The second phase of the Project foresees to develop such design. A simulator of a
HiPeRCAR system provides the environment for the assessment of the resilience feature. An
emulator of a possible HiPeRCAR system will allow soon to measure the performance and to get
useful hints to base the design of future robotic missions.

At the current stage, the Project aims at providing an assessment of the resilience strategy with an
appropriate apportionment of the tasks over the nodes. This paper shows the results achieved by a
simulation of a simplified robotic application.

3. THE RESILIENCE CONCEPT

The realistic scenario of a space mission assumes that failures due to cosmic radiation may hit the
Worker nodes; this cause degrades temporarily of definitively the performance of the node in
troubles.
HiPeRCAR has to guarantee the absolute continuity of service despite of failures that can hit its
weak components. In other words, the system does never interrupt a running service. A global
reduction of the performance may be tolerated by it but not loosing of the service. The system must
resume autonomously the nominal performance as soon as the critical time is over (i.e. the failure
disappears). If the failed node cannot be recovered, the system tries to assign the affected jobs to
available nodes or in worst-case carries out by itself those jobs with the possible resources.

4. THE RESILIENCE STRATEGY

The HiPeRCAR system achieves this feature not by complex architectural schemes but through a
software technique.
The shutdown and reboot operations of a failed node could last couple of seconds; a time too long
to maintain the continuity of the affected service. Therefore, a safe control shall relay on tasks
resident on the never interrupted Master node.

The HiPeRCAR Software foresees that reduced versions of the tasks running on the Worker nodes
are always active on the Master node. Those basic tasks allow Master to control all the robotic
devices by alone, but if the nominal tasks are running on Workers, the results of such advanced
services improve movements and autonomy of the robotic system.
If a Worker fails just the contribution of the advanced parts is missing, but the basic control task
stays still operable. Thanks to the “Resilience” feature, HiPeRCAR reacts to possible damages of its
weakest components by reallocating the faulty tasks in optimal mode. An external observer will not
detect discontinuity in the service.

Different design solutions have been tried, mainly addressing the optimal split of the task that has to
react instantly to the Worker’s crash. A simulator of the HiPeRCAR system has been set up just to
experiment this technique. The out-coming trade-off finds here a description.

5. THE RESILIENCE DESIGN

The design of such a concept goes through the implementation of the following basic tools:
a) Fault Detection and Fault Recovery

Master node performs the continuous and frequent monitoring of the status of Worker Nodes.
The robotic task execution is made by the cooperation of Worker and Master. The presence of
the former is not an absolute need.

b) Interconnection network: the Middleware Framework
A Middleware framework runs onboard all the nodes and carries out in uniform mode all the
basic tasks taking care of a heterogeneous environment made of different computer types. Its
Communication Manager distributes messages among tasks everywhere located over the
network. Middleware permits tasks to smoothly flow from one node to another one. At any
time, a task can disappear from one node (e.g. a node crash) and reappear on another node (task
distribution) [4].

c) Basic and Nominal Mode for task design
Basic mode is in charge of the safe operations of the system. Its design is simple, resources
economical, in charge to Master Node. While running in basic mode, the system provides a
low performance service.
Nominal mode includes complex and resource-intensive computations provided by a network
of tasks distributed in the Worker nodes. The task outputs in Nominal mode are achieved by
the contribution of Worker and Master nodes.

The implementation of these basic tools is described in the paper.

Splitting into Basic and Nominal mode for a given robotic function “F” is a major challenge of the
Project. There are no general rules to split a function into the two complementary parties; this
design has to be done on a case-by-case basis. PASTEUR and EUROBOT mission scenarios allow
to carry out this exercise.

6. THE HiPeRCAR SIMULATOR

The HiPeCAR generic architecture defined on the Project Phase-1 is simulated on a PC/Linux
workstation firstly. Purpose of this simulator is the assessment of the SW architecture, mainly
addressing bullets a), b) and c) and the tuning of the algorithms.

The simulator workstation is a PC with a Pentium 4, 3.4 GHz of CPU, 1 GB of RAM and Fedora -
Linux Core 5 as Operating System connected via TCP/IP to a PC emulating the current Point Of
Control (POC = Ground, Space Station, Spacecraft or Crew MMI) (Fig. 6.1).

A Master, an intelligent Solid-State Mass Memory (SSMM) and two Workers compose the
simulated system. Master is in charge of external bus (MIL-1553 and CAN) management. This
means that three types of nodes (minimum set) are foreseen:
1. Master that is fixed to be the node number 0
2. SSMM that is fixed to be the node number 1
3. Two Workers that are numbered 2 and 3.
For this reason, three different code images are generated: master image (_m extension); SSMM
image (_s extension); worker image (_w extension).
One shell-window is dedicated to each kind of node to run the simulation (Fig. 6.2).

POC = DREAMS

Master Shell SSMM Shell

Worker1 Shell Worker2 Shell

Fig.6.1: Simulator Workstation connected to POC PC

Master
Node 0

SSMM
Node 1

Worker 1
Node 2

Worker 2
Node 3

TCP/IP

Fig. 6.2: Simulated Nodes connected via TCP/IP

7. TEST SW SIMULATING A REPRESENTATIVE ENVIRONMENT

The HiPeRCAR application layer that runs on top of the Middleware Framework is composed of
two parts: Mission Independent, including functions common to all kinds of mission (e.g.
Command Handler and Telemetry Manager); Mission Dependent, including the specifying
functions of the mission (such as Mission Command Handler and mission Control Tasks, the
function that control the foreseen system devices).

The Mission Independent supported functionalities are:
1. External communications, Point of Control handling
2. Commands forwarded to and executed by specialized handlers
3. Telemetry generation
4. Handling of system operative modes
5. Management of Basic and Nominal mode of Control Tasks
6. FDIR-1: cyclic and sporadic checks, centralized event handling, severity thresholds and

associated recovery actions
7. FDIR-2: Robustness, resilience and graceful degradation of Control Tasks
8. I/O interface to robotic devices (SCB, science instruments).

In the HiPeRCAR Simulator some extra modules have been added (Fig 7.1) to emulate the external
communications with the POC and the Robotic Bus Controller (Servo Control Boards).

Visualization and analysis tool

HiPeRCAR Simulator SW
H

iP
eR

C
A

R
 S

W

Emulated POC

TC/TM Translator

POC I/F Handler

SBC I/F Handler

Emulated SBC

Supported Functionalities

HiPeRCAR SW

Global/Distributed Middleware

Common
SW

Mission
Independent

Sw

Mission
Dependent

Sw

Fig. 7.1: Simulator of HiPeRCAR SW

8. VERIFICATION TEST BED

As HiPeRCAR is a generic platform, in order to demonstrate its features it is necessary to
instantiate it for a particular mission. To this purpose, two study cases, inspired to actual ESA
missions presently in preparation, are foreseen: PASTEUR and EUROBOT.
For these scenarios the following Mission Dependent functionalities are simulated:
For Eurobot Mission:

Handling of motion state, EUROBOT commands handler telemetry generation, EUROBOT
Control Tasks (Control of single arm with EE, Coordinated Control of the arms,
Environment reconstruction, Mission Autonomy, Collision Detection, Collision Avoidance,
Data Acquisition).

For the Pasteur Mission:
Handling of motion state, PASTEUR commands handler, PASTEUR telemetry generation,
PASTEUR Control Tasks (Drill Control, SPDS and Microscope Control, Mission
Autonomy, Data Acquisition).

The reference missions are composed of a sequence of tasks. For this reason the task analysis have
been performed and a reduced but not simplified subset of the real functions have been identified,
so that they may serve as a credible starting point for the specification of the flight software.

After the identification of the reference missions, some test cases have been defined to allow the
architecture verification. By injecting of different failures in different execution time on the mission
timeline it is possible to activate the reaction of the system:
1. Robustness Test: the mission continues in Basic mode and it is always applied;
2. Resilience Test: the mission continues in Nominal mode recovering the failed worker node or

transferring the lost Control tasks into another worker node. It is applied in any case, but not
always successfully.

3. Graceful degradation Test: no successful resilience action; therefore, the mission continues in
Basic mode.

The paper describes those tests and the achieved results.

	INTRODUCTION

