
E M B E D D E D L O G G I N G
F R A M E W O R K F O R

S PA C E C R A F T S

Frank Dannemann
Institute of Space Systems

German Aerospace Center

frank.dannemann@dlr.de

Prof. Dr. Sergio Montenegro
Aerospace Information Technology

University of Würzburg

montenegro@informatik.uni-wuerzburg.de

Abstract

During the different development phases of a spacecraft there exist
various kind of information worlds, which often hold the same kind
of content. In this paper we present an approach that can be seen as a
first step to combine these worlds. An embedded software framework is
introduced, which takes over the functionality of the internal debugging
features of the system on the one hand, and on the other hand is a
possible candidate for substituting the system’s telemetry application,
which is responsible for sending spacecraft status information to the
ground station. Taking a minimal implementation of the framework,
it’s advantages by using it in the context of a satellite’s console-based
debug statements mainly needed for integration and testing purposes
are shown in a practical use case.

1 introduction

Taking it to the extreme, there are at least two information worlds on board
of a satellite which coexist with no interchange of information at all, although
there’s great intersection of the content that has to be provided. On the one
hand there the debugging world of the embedded software developer, who’s
in charge of developing the software for the boot image of the satellite, while
on the other hand there’s the ”official” telemetry world, holding the satellite
status information to be send to the groundstation each time the satellite is
in contact with the antennas on earth.
This situation has several disadvantages, some of them are quite crucial:

effort overhead The same kind of information has to be provided to
both information worlds which is an unnecessary overhead.

error prone In case of a change both information worlds have to be
adapted.

memory consumption By holding redundant information not only the
the size of the source code and boot image will be larger than necessary,
also the memory consumption at execution time will be bigger then in
case of having only one single framework for information processing.

processor consumption The execution and formatting of the unneces-
sary PRINTF statements on board of the satellite consumes processor
time and load, even though they could safely be deactivated after
launch, because none of the message to be printed on a console can be
displayed anymore.

The solution of getting rid of the unnecessary PRINTF statements would be
their removal in the final boot image of the OBC. But nobody dares to do
this, because of three major reasons:

1

fdan
Textfeld
Extended Abstract



1. it is too much effort

2. the behaviour after removal is not predictable

3. the tested and maybe certified boot image will loose this status (addi-
tional testing and certification may be necessary)

Our approach to this problem is to combine these two information worlds
and introduce a framework which is based on the idea of using information
sources and sinks and decoupling them, meaning the separation of the
functionalities (1) logging of information, (2) sending them to a sink and (3)
displaying them. Like displayed in figure 1, this replacement of the former
PRINTF-debugging and logging functionality is achieved by introducing
new components like Logger, Appender and Layout. Providing a minimal

Figure 1: Separation of data flow

working example, an exemplary ConsoleAppender has been combined with
a PatternLayout providing the engineer with a similar output to PRINTF,
yet being much more flexible and getting all the additional advantages the
logging framework has to offer. Within this paper we present our first results,
using the real-time operating system RODOS as a testbed for development
and testing. The advantages of using the framework firstly as a replacement
of the console based debug messages are explained and shown in a real use
case.

2 rodos

RODOS is the acronym for Realtime Object-Oriented Distributed Operating
System. As an embedded operating system it is specially designed for
space applications, but fits perfectly to all applications demanding high
dependability. The RODOS real-time kernel and middleware provide an
integrated object-oriented framework to multitasking resource management
and to network-based communication infrastructure. Although targeting
minimal complexity, no fundamental functionality is missing, as its micro-
kernel provides support for resource management, thread synchronization
and communication, input/output, and interrupts management. The system
is fully preemptive and uses priority-based scheduling and round robin for
threads sharing the same priority level. RODOS is written mainly in the C++
programming language, some hardware dependent parts are written in C
and target specific assembly language. Despite RODOS is intended for stand
alone use in embedded systems, the user can also run it on-top of Linux as
guest OS. It is built as a static library, so that a user can link his code against
this library and run the resulting binary.
The overview of the RODOS architecture is shown in picture 2. Besides the
HDL, core and management layers RODOS also comes with an (optional)
middleware. The users main interface is therefore the application module,
which encloses one or more threads. In each application module, the pro-
grammer can create an application object that defines an application name

2

fdan
Textfeld
Extended Abstract



Figure 2: RODOS Layers

and an identification number. By using the publish/subscribe mechanism
from the middleware it is easily possible not only to establish an inter-process
communication between applications, but also to communicate with several
RODOS computing nodes over the network (Ethernet (TCP/IP), CAN com-
munication) using gateways.
A detailed design description of RODOS can be found in [2]. RODOS is Open-
Source under the BSD-license and can be obtained through it’s SourceForge1

or DLR-websites2.

3 rodos-debugging with printf

Referring to figure 2, there are two kinds of users who are using the
debugging-technique using print-statements for the console. First, there
is the RODOS user, who wants to use the RTOS (RealTime Operating System)
in order to operate the onboard computer of his specific mission. He is only
working in the application layer, dealing with the RODOS API from the
middleware- and management-layers. Debugging with PRINTF will help him
finding errors during the time of developing and testing his applications
and will finally end up with an error-free boot image for the onboard com-
puter. Second, the RODOS developer itself makes extensive usage of the
PRINTF-debugging capabilities while working on all layers that are located
underneath the application layer. Though both types of developers gain
benefit from using the monitoring framework presented here, within this
paper we focus on the needs of the application developer, meaning the user
of the RTOS.

Debugging with print-Statements inside the source code of a software
program is often referred to as printf-debugging [1]. The name arises from the
printf-statement in the C programming language, but similar statements can
be found in all major high-level programming languages used for embedded
systems. As RODOS is developed mainly in C++, it’s internal debugging
statement is also called PRINTF3. The main intention behind the usage of
these kind of statements is to track the control and data flow during the
actual execution of the code. This is done by adding PRINTF-statements
directly in the code of the applications. For this purpose RODOS offers
debug methods like PRINTF and ERROR. A shown in picture 3, these methods
can be used by application developers by simply including debug.h in their
application. In this typical debugging scenario, the developer starts a console

1 http://sourceforge.net/projects/rodos
2 http://www.dlr.de/rodos
3 cerr or cout together with their operators << and >> would have been also a possible solution

3

fdan
Textfeld
Extended Abstract



on his host computer, establishes a serial connection to the target platform
(here: the onboard computer of a satellite) and is afterwards able to watch
the PRINTF-output on the terminal using a standard UART-interface.

Figure 3: RODOS debugging using PRINTF statements

4 the new monitoring framework

When designing the new monitoring framework, there where several require-
ments which had to be taken into account. Some of the most important ones
are listed here:

simple & familiar usage The new framework should be as simple to
use as the familiar PRINTF- and ERROR-methods.

rodos integration The technique behind the new logging mechanism
shall utilize the RODOS middleware, which is the tool of choice for all
kinds of inter-process communication inside the RODOS framework.

simple & approved design The framework design shall be oriented to-
wards the architecture of the log4j logging framework4 , which is widely
used for java-based desktop applications. The design of log4j is very
simple and similar to what is depicted in figure 1, nevertheless it’s a
powerful and mature logging framework, offering features like clas-
sifying messages by using categories and filter them accordingly at
runtime.

low memory & power consumption The integration of the logging
framework into RODOS shall result in a minimum increase of resource
consumption.

dividing input from output Due to the resource requirement men-
tioned above, the user has to be able to deactivate the message output
(sink) at runtime.

variable output Output shall be send to various message sinks: console,
file, network, . . .

Using the RODOS middleware it shall be possible to send logging informa-
tion over the network to any other RODOS instance using gateways, like
depicted in figure 4. In this example, formatting of the received messages
on the host computer is done by the Appender- and Layout-modules. They
can be configured in a way, that – if requested – the console output is similar
to what is produced by the PRINTF-methods. But any other output is also
possible. The first minimal implementation of the framework was developed
and tested within the scope of a diploma thesis [3].

4 http://logging.apache.org/log4j

4

fdan
Textfeld
Extended Abstract



Figure 4: RODOS debugging using the Logging Framework

5 conclusions & outlook

Though further testing on target hardware platforms (especially LEON-
processor based boards) is necessary in order to evaluate the performance of
the logging framework in an embedded system, the results achieved so far
are very promising. Using the middleware communication capabilities of the
RODOS RTOS, the framework integrates nicely into the embedded system
software. The application developer has a simple-to-use interface at hand,
which can be configured in way that e.g. debug messages are displayed
just as the familiar print-statements. On the other hand, powerful features
are added to system: message transport over network boundaries, flexible
output configuration even at runtime, deactivation at compile- and runtime –
just to mention a few.
The further development will focus – on the one hand – on expanding the
current functionality of the framework, like adding additional layouts for
other user groups (e.g. integration or mission control engineers) or creating
new appenders (e.g. file appender). On the other hand, we are also thinking
about new architectural changes. The most important ones are the usage of
the logging framework as a replacement of the housekeeping functionality of
a spacecraft, and the integration of the framework into a RTOS-independent
middleware.

references

[1] J.H.M. Dassen and I.G. Sprinkhuizen-Kuyper. Debugging C and C++ Code
in a Unix environment, chapter Debugging techniques. 1999.

[2] Sergio Montenegro and Frank Dannemann. RODOS - Real Time Kernel
Design for Dependability. In DASIA (DAta Systems In Aerospace), 2009.

[3] Sven Müller. Entwicklung eines Rahmenwerks zur Nachrichtenprotokol-
lierung für das eingebettete Echzeitbetriebssystem RODOS. Master’s
thesis, Universität Oldenburg, 2012.

5

fdan
Textfeld
Extended Abstract


	Introduction
	RODOS
	RODOS-Debugging with PRINTF
	The new monitoring framework
	Conclusions & Outlook



