A FLEXIBLE HARDWARE TEST AND DEMONSTRATION PLATFORM FOR THE
FRACTIONATED SYSTEM ARCHITECTURE YETE

Florian Kempf', Roland Haber?, Tristan Tzschichholz?, Tobias Mikschl®, Alexander Hilgarth?, Sergio
Montenegro®, and Klaus Schilling'

'Robotics and Telematics Department, University of Wiirzburg, 97074 Wiirzburg, Germany,
{kempf|schi} @informatik.uni-wuerzburg.de
2Zentrum fiir Telematik e.V., Magdalene-Schoch-Strafe 5, 97074 Wiirzburg, Germany,
{roland.haber|tristan.tzschichholz} @telematik-zentrum.de
3Aerospace Information Technology Department, University of Wiirzburg, 97074 Wiirzburg, Germany,
{tobias.mikschl|alexander.hilgarth|sergio.montenegro’} @uni-wuerzburg.de

ABSTRACT

This paper introduces a hardware-in-the loop test and
demonstration platform for the YETE system architecture
for fractionated spacecraft. It is designed for rapid pro-
totyping and testing of distributed control approaches for
the YETE architecture subject to varying network topolo-
gies and transmission channel properties between the in-
dividual YETE hardware nodes.

Key words: Hardware-in-the-loop test platform; Frac-
tionated spacecraft architecture; Distributed networked
control.

1. INTRODUCTION

One of the trends in the space sector in the last decade
is the transition from monolithic spacecraft architectures
towards more flexible approaches while still maintain-
ing a high degree of reliability and robustness. This
development paves the way for novel collaborative dis-
tributed spacecraft concepts with a high degree of modu-
larity as described in [[10]. A spacecraft design, in which
the functional capabilities of a usually single monolithic
spacecraft are split and distributed among several wire-
less interconnected cooperating homogeneous or hetero-
geneous spacecraft(-subcomponents) is called a fraction-
ated spacecraft architecture, as further detailed in [[L] and
[3]]. The advantages of such an architecture are increased
mission and in-orbit robustness, flexibility to extend sys-
tem features later on and a lowered mission recovery cost
[2], [1]. The bigger the substituted monolithic system
and the longer the desired mission duration, the higher is
the gain in fractionation value as detailed in [9] for the
exemplary F6 system architecture.

Despite the many advantages of a distributed system

architecture, such an approach also faces several chal-
lenges. For one as all system components/modules
communicate over wireless links the varying short- and
long-range transmission channel properties, like delay or
packet loss, have to be considered in the hardware and
software design. Another challenge is related to the of-
ten heterogeneous system composition that requires the
system to balance the work load distribution according to
the individual component capabilities and also to take the
different module constraints into account, e.g. actuator
limits or power restrictions.

To test the performance of such a distributed system, in
this particular case the fractionated spacecraft architec-
ture YETE, under the afore mentioned influences we de-
veloped a demonstration and test platform that allows us
rapid prototyping of core YETE components and an easy
extension of the overall system test complexity. This flex-
ible test platform will be introduced in this paper.

After a brief introduction of the YETE architecture in sec-
tion 2] the individual parts of the test platform are intro-
duced. The paper is then concluded with a brief outlook
on further and currently ongoing work in section

2. SPACECRAFT ARCHITECTURE YETE

In the domain of modern networked spacecraft and un-
manned systems employed in search-and-rescue scenar-
io0s, robustness to failures of the communication network
(high delays, broken links) and individual system com-
ponents (sensors, actuators, and processors) is a desired
trait of the utilized system architecture. The developed
fractionated systems architecture "YETE’ realizes this ro-
bustness by enforcing a strong modularity on hardware
and software level and employing distributed approaches
whenever applicable (see [4] and [3]]). Failures in system
component/subsystem processors are leveraged by trans-
ferring the necessary subsystem computations to a gen-

eral purpose computing cluster, which consists of each
subsystem processor and several computation modules.
Furthermore, failures of whole components (sensors / ac-
tuators) is mitigated by the task-migration capability and
Publisher/Subscriber communication architecture of the
middleware "'RODOS’, which is running on all compo-
nents (also called nodes) in YETE (for a further descrip-
tion of RODOS see [4],[8] and [7]). The resulting loose
coupling between data sinks (e.g. sensors), sources (e.g.
actuators) and processing tasks allows the switching from
a failed component to a working one without interrupting
the rest of the system. Another advantage of the high
modularity in the YETE architecture is the re-usability of
software- as well as hardware components. This is espe-
cially advantageous in the space industry, where chang-
ing mission requirements often mean major redesigns of
an existing spacecraft architecture.

One very important part of YETE is the control of the
hardware nodes in a single spacecraft as well as the con-
trol of several collections of nodes, e.g. a formation of
YETE spacecraft. In YETE the focus lies on robust dis-
tributed control approaches (e.g. see [3]]). To efficiently
validate the performance of implemented approaches we
developed a hardware-in-the-loop test platform, which
will be introduced in the following sections.

3. HW-IN-THE-LOOP APPROACH

The YETE hardware-in-the-loop test platform was de-
signed to satisfy several criteria. It should allow rapid
testing and prototyping of distributed control approaches
running in real-time on several YETE hardware nodes
equipped with sensors, actuators and processors. It
should furthermore allow to test the impact of a variety
of different node network structures with varying chan-
nel properties, ranging from intra-satellite wireless bus
to inter-satellite formation network configurations. As a
result the hardware-in-the-loop test platform consists of
three parts, a synthesized Simulink RODOS task running
the control algorithm on one or more nodes, a software
network simulation which substitutes part of the hard-
ware communication interfaces of the nodes and there-
fore creates the interconnections between them and the
YETE hardware demonstrator which consists of the actu-
ators, sensors and embedded computers representing sev-
eral YETE nodes.

Each of these parts will be described in more detail in
the following sections. In section [the network simula-
tion will be described and how it is integrated with the
YETE nodes. The following section [5|describes how the
Simulink task is generated so that it can run under RO-
DOS on an embedded hardware node. Section [6] briefly
covers the distributed control approach that is utilized in
this system and finally in section [7] the structure of the
hardware demonstrator is described in more detail.

4. COMMUNICATION SIMULATION

To allow the testing of different control algorithms un-
der controlled network conditions we decided to use the
discrete event simulator Omnet++ as simulation environ-
ment.

The first requirement we imposed on the network simula-
tion is that it should substitute the simulated real system
components as accurately as possible. One prerequisite
for that is that the simulation is transparent for all non-
simulated components in the system. In a later project
stage the simulation can then be substituted by real hard-
ware without the need for changes to the non simulated
system components. To achieve this we integrated the
Omnet++ simulation seamlessly into the RODOS com-
munication layer, this can be seen in ﬁgure

on dedicated PC

Omnet++ Communication Simulation

Figure 1. Integration of Omnet++ into the YETE system.

Furthermore the simulation itself should introduce min-
imal simulation overhead into the system. For this pur-
pose we designed the simulation to be run on a powerful
external dedicated PC, to limit the influence of simulation
calculations on the simulated system process. The intro-
duced delay by the simulation can be seen in Figure[3] As
our distributed control loop is running with an update rate
of 10H z and most of the transmitted packets have a delay
of less than 150us and strictly under 1ms the simulation
overhead in our case is negligible.

We also extended the Omnet++ Real Time Event Sched-
uler to handle asynchronous real time events coming from
a RODOS-to-Omnet++ Gateway, which is further de-
scribed below.

Integration of external real-time applications into Om-
net++ has already been done before [6]], however none
of the proposed concepts apply in this case. The rea-
son is, that the external application, RODOS in this case,
will be running on several distributed nodes, some of
which are embedded devices. Therefore the link between
the RODOS Operating System and the Omnet++ com-
munication simulation consists of two parts, one is plat-
form dependent and is running on the RODOS side and
one is platform independent and is running on the Om-
net++ side. The communication between the two parts
can be done via a wide variety of interfaces (TCP/IP-
Ethernet, RS232, CAN-Bus, etc.) to support integra-

tion of all the heterogeneous YETE nodes. The part on
the RODOS side is implemented as a RODOS hardware
link-interface. This link-interface is part of the RODOS
hardware-abstraction-layer and can later be exchanged by
link-interfaces to real communication hardware, e.g. a
Bluetooth Low Energy (BLE) module. This way the sim-
ulation appears transparent to tasks running in the RO-
DOS system.

On the Omnet++ side a RODOS gateway module receives
RODOS package data from the connected nodes, feeds it
into the simulation network and transmits received data
from the simulation side back to the destination nodes. A
RODOS gateway module is shown in Figure[2] it consists
of a linkcoordinator module, which manages the asyn-
chronously received/transmitted data from/to the RODOS
nodes over various interface modules, which perform the
low-level communication hardware access.

....) JRodos_gw

c—| c—| c—| c—|
t+ t+ 1+ t+

tepiplink_n1 tcpiplink_n2 RS232link_n1 dummylink_n1

0]
1

linkcoofdinator1

v

Figure 2. RODOS-Gateway-Module in Omnet++ which
acts as the link between the simulation and the hardware
nodes.

Further details regarding the implementation of intra- and
inter-spacecraft link simulation in Omnet++ can be seen
in [4].

uuuuuuuuuuuuu

Sem Dty o]

Figure 3. Communication delay introduced by the simu-
lation in [ps]. The introduced delay for most of the 4687
transmitted packets is less than 150 [pus].

5. MATLAB-SIMULINK INTEGRATION

In order to simplify the creation of control algorithms
for the proposed distributed computing tasks, a MAT-
LAB Simulink connection to RODOS has been devel-
oped. This allows for rapid modeling of control pro-
cesses that can also be translated into C-language as well

as machine code for running on a target microcontroller
or any other system. Once a model has been created,
the Simulink infrastructure is used to compile code into
a standalone binary, which contains a RODOS operating
system running the model as an integrated task (Figure[d).
These Simulink models also include RODOS data trans-

Publisher/
Subscriber block

Simulink Model A

Simulink Infrastructure

!

Any other task «——>

RODOS

Y

RODOS
Middleware

Figure 4. Simulink-RODOS interface including Publisher
and Subscriber blocks for data transfer.

fer interfaces in the form of Publisher and Subscriber
blocks. Therefore, it is possible to transmit signals be-
tween different tasks as well as between dedicated hard-
ware systems, which include STM32F4, UDOO, and X86
platforms (Figure [5). This method also creates an in-
terface between sensors and actuators of different hard-
ware architectures. Along with Simulink running in ex-
ternal mode, we are able to perform in-system debug-
ging, which allows for real time access to the active tasks.
However, external mode is currently limited to TCP con-
nections on x86 systems.

Subscription
T T
Display1 Subscriber

¥

Figure 5. Exemplary Simulink model being run as a RO-
DOS Task. Integers are being displayed and transfered
using the Publisher and Subscriber blocks.

In figure [6] the system trajectory for two Simulink pro-
cesses, one running in Matlab, the other running as a task
inside a RODOS hardware node, can be seen. In both
cases the same PD-Controller tries to drive a simple dou-

ble integrator system m# = w;y = & from initial state

%o = [0.1,0.3]7, %5 = [0,0]7 to the exemplary target
point 7* = [—3,0]T. On the hardware the system state is
sampled with a frequency f; = 1 Hz and as can be seen
in figure [f] both trajectories of the Simulink controlled
systems align, which demonstrates a successful integra-
tion of Simulink into RODOS.

03 T T T T T
= trajectory from Simulnik
> output of hardware
0.25F :
0.2
0.15
0.1F
0.05
ol
~0.05 i i . i i i i
-35 -3 -2.5 -2 -1.5 -1 -0.5 0 05

Figure 6. Comparison of two Simulink control process
performances. One (red curve) is running in Matlab, the
other one (blue dots) is running on-board a RODOS hard-
ware node and is sampled with fs =1 H z.

6. DISTRIBUTED CONTROL APPROACH

The structure of the current distributed control approach
in YETE is a master-slave architecture, which is visual-
ized in figure[7] On the master hardware node a RODOS
Simulink task is executing a H, controller, which con-
trols the state of both, the master and the slave hardware
node according to a reference input y,.r. The controller
is optimized to exhibit a low disturbance sensitivity on
ds, dpr and dy as well as a good reference tracking of the
master and slave. It furthermore needs to handle a lossy
slave state feedback ¢js subject to a certain packet drop
probability, which simulates a disturbed wireless connec-
tion between the slave system and the master.

For more details on the controller design and system
model we kindly refer you to [5].

- m -

dy Network /
§'e

Yref d

Figure 7. Distributed control system structure in YETE as
master-slave architecture. The H, controller running on
the master controls both systems according to a external
reference trajectory. The slave state feedback is subject
to packet drops.

7. HARDWARE DEMONSTRATOR SETUP

As a means of demonstrating the proposed distributed
control algorithms, a test platform has been developed
(Figure [8). This demonstrator consists of two identical
pendulums, each equipped with sensors (gyroscope) and
actuators (propeller), which are controlled by separate
32-bit ARM processors. These pendulums in themselves
function independently from one another. Each proces-
sor therefore stabilizes its pendulum by controlling the
propeller velocity accordingly. With the introduction of a
Bluetooth link between the two processors, we were able
to establish a coupling that forms the basis for distributed
computing and control of the propellers. Additionally, a
computer for data management as well as active control
of the indirectly connected propellers is also coupled over
Bluetooth.

Figure 8. Test platform for distributed control algorithms
consisting of two identical pendulums with Bluetooth in-
terconnection for data exchange.

Figure O] illustrates the data flow from each sensor to the
corresponding MCU and ultimately to the respective ro-
tor. The before mentioned Bluetooth data exchange be-
tween the two MCUs as well as between the MCUs and
the PC is also indicated. During operations, the PC is
running a graphical user interface, which provides data
display as well as the ability to actively alter propeller

velocities.

GyroData0 GyroData0 &1 GyroData1&0 GyroData1
Sensor 0 Mcu 0 PC Mcu 1 Sensor 1

P
g3%

—> ¢

Rotor 0 Rotor 1 > Blustooth

Figure 9. Data flow using I*C and Bluetooth within and
between both pendulums.

In a first demonstration, an exchange of sensor data is im-
plemented in the running cycle of the microcontrollers.
This implementation already allows for the possibility of
comparing and/or replacing sensor outputs. In the case
of a temporary sensor failure in one of the propellers,
the data received from the other microcontroller can be
used instead. Similarly, one of the microcontrollers may
entirely rely on the external sensor data and thus com-
pletely omit its own inputs in order to avoid discrepancies
between the two readouts. In addition to simply exchang-
ing sensor data, one of the MCUs can take over compu-
tation tasks of the other, thereby processing the foreign
sensor readouts and returning the calculated results. This
procedure demonstrates on a small scale how distributed
computing can help unburden processors during a high
system load.

The combined control performance for the two pendu-
lums in a master-slave configuration can be seen in fig-
ure @ The states of the master g, and slave system g;
should follow individual sinusoidal reference trajectories
gy and g;'. On the bottom of the figure the packet drop
events in the state feedback from the slave is plotted.
With a one indicating a packet drop. Despite the many
packet drops that occur with a probability of p = 32 %,
the controller manages to keep the two systems on the
respective reference trajectories. However as seen in the
middle of the figure, the control effort for the slave sys-
tem is increased to compensate for the estimation error of
the slave system state.

——q
9
K 777‘“*1

q

Angle [deg]
Lo

"

i i L i i
20 40 60 80 100 120 140 160 180 200

- 1 T T T T T T T T T
) R N
g OB e bbb SRR O C | e Thrust,

0 L 1 i i i i

I i
20 40 80 100 120 140 160 180 200
20

B0

| e e i g

R RRAORA (40

(11 TR R A
L KA 0 g
I TR
60 80 100 120 1:

tls]

Figure 10. Master-Slave distributed control performance
for the two pendulum hardware setup. The master state
qr and slave state q; are controlled to follow two sinu-
soidal reference trajectories q and q}. The packet-drop
probability in the slave feedback is p = 32 %.

8. CONCLUSION

In this paper we introduced the individual components
of a test and demonstration platform for the fractionated
system architecture YETE. By directly integrating a soft-
ware network simulator and the controller design tool
Simulink into a hardware-in-the-loop test setup we main-
tained the flexibility of these modular software tools for
rapid prototyping while gaining the accuracy of a verifi-
cation directly on the test hardware. Furthermore promis-
ing test results of the individual components and the com-
bined test system were presented.

We are currently in the process of also integrating the
YETE test-environment on the Space Maneuver Simu-
lator (SMS), developed at the Satellite Aerospace In-
formation Technology Department at the University of
Wiirzburg. This will allow us to perform more elabo-
rate tests of the YETE architecture, e.g. robustness of the
distributed control regarding thrusting errors and multi
SMS-vehicle resource sharing and cooperation.

Two further enhancements regarding the YETE system
that are currently being implemented are the substitution
of the bluetooth inter-module communication by ultra-
wideband transceivers and the transition from a central-
ized time synchronization approach to a decentralized
one based on a maximum value consensus.

In the future we aim to also test another distributed mo-
tion planning and control approach based on Rapidly-
Exploring-Random-Trees (RRT) and more in depth FDIR
tests, especially for hardware node failures.

Figure 11. Three DoF Space Maneuver Simulator (SMS)
of the Satellite Aerospace Information Technology De-
partment of the University of Wiirzburg.

ACKNOWLEDGMENT

The authors would like to thank the Space Agency of the
German Aerospace Center (DLR) for funding the project
with federal funds of the German Federal Ministry of
Economics and Technology (BMWi) under SORA1330.

REFERENCES

[1]

Owen Brown and Paul Eremenko. Fractionated
space architectures: a vision for responsive space.
Technical report, DTIC Document, 2006.

Owen Brown, Paul Eremenko, and B Hamilton. The
value proposition for fractionated space architec-
tures. Sciences, 99(1):2538-2545, 2002.

J Guo, DC Maessen, and EKA Gill. Fractionated
spacecraft: the new sprout in distributed space sys-
tems. In 60th International Astronautical Congress:
IAC 2009, 12-16 October 2009, Daejeon, Republic
of Korea, 2009.

F. Kempf, A. Hilgarth, A. Kheirkhah, T. Mikschl,
T. Tzschichholz, S. Montenegro, and K. Schilling.
Reliable networked distributed on-board data han-
dling using a odular approach with heterogeneus
components. In 4S Symposium, May 2014.

A Kheirkhah, F Kempf, T Tzschichholz, and
K Schilling. Robust distributed control for
a mechanical-electrical demonstrator considering
communication constraints. IFAC-PapersOnlLine,
48(10):246-251, 2015.

Christoph P Mayer and Thomas Gamer. Integrat-
ing real world applications into omnet++. Institute
of Telematics, University of Karlsruhe, Karlsruhe,
Germany, Tech. Rep. TM-2008-2, 2008.

[7]

(8]

(10]

Sergio Montenegro. Rodos: Real time kernel design
for dependability, 2010.

Sergio Montenegro, Vladimir Petrovic, and Gunter
Schoof. Network centric systems for space applica-
tions. In Advances in Satellite and Space Commu-
nications (SPACOMM), 2010 Second International
Conference on, pages 146-150. IEEE, 2010.

Mohsen Mosleh, Kia Dalili, and Babak Heydari.
Optimal modularity for fractionated spacecraft: The

case of system f6. Procedia Computer Science,
28:164-170, 2014.

James Skinner, Tollefson Mark, and Jeremy Rosen-
stock. Cooperating intelligent agents for distributed
satellite systems. In Proceedings of the AIAA Civil
and Defense Systems Conference, Hunstville AL,
1998.

	Introduction
	Spacecraft Architecture YETE
	HW-in-the-loop approach
	Communication Simulation
	Matlab-Simulink Integration
	Distributed Control Approach
	Hardware Demonstrator Setup
	Conclusion

