
BOSS/EVERCONTROL

Dependable RT Operating System and

Middleware

Sergio Montenegro, Felix Holzky

FhG-FIRST

Kekulestr 7, 12489 Berlin

sergio@first.fhg.de

www.first.fhg.de/~sergio

Tel +49 30 63921878

Abstract

BOSS/EVERCONTROL are a real-time embedded operating system and middleware, which

were designed for safety and simplicity and to allow their own mathematically formal

verification (on which work is currently in progress). Nowadays, formal verification is not

possible for complex systems; what is needed is a simple and well-structured description of

the system (like BOSS) to be verified,. Further advantages of simplicity are obvious: the

system can be easily understood, used and ported to other platforms. Besides, complexity is

the root of most development errors – if you eliminate complexity, you eliminate most

development errors.

1. Introduction

Our aim is to obtain the greatest possible dependability of embedded systems by reducing

development errors (through simplicity) and handling runtime anomalies (by fault tolerance

support). The principles underlying the creation of BOSS and its middleware

EVERCONTROL were: find and build the irreducible complexity, use modern framework

technology for the underlying operating system (BOSS) and component technology for the

middleware and its applications (EVERCONTROL). The results are very promising. BOSS

has been in continuous use in space (BIRD satellite) and in medical devices for a number of

years now. Even complex functionality can be implemented very easily using

BOSS/EVERCONTROL.

2. An Example: BIRD Satellite

Figure 1: BIRD in space

BIRD is a microsatellite (German Aerospace Center, DLR) designed for the early detection

of fires around the globe. It is able to detect any fire larger than 12 m2, to compute

temperatures to an accuracy of half a degree, and compute energy radiation from fires, cities,

industry, etc. Microsatellites have to meet a major challenge: fulfilling high performance

requirements using small-scale equipment and in particular on small budgets. Cost is one of

the most important factors in microsatellite missions. To keep costs within the low budget

limits, demonstrating new and non-space-enabled technologies for the spacecraft is a key

factor in meeting high performance mission requirements. To achieve high dependability and

safety and a long useful life, the on-board computer consists of four identical computers. As

shown in the block diagram in Figure 2, the redundant nodes and satellite devices are

interconnected by several bus systems.

The architecture of the redundant control computer allows each of the nodes to execute

all/any control tasks. One node (the worker) controls the satellite, while a second node

(supervisor) supervises the correct operation of the worker node. The other two node

computers are spare components and are disconnected. If an anomaly in the worker node is

detected, the supervisor becomes the worker and takes over control of the satellite. The

former worker node is forced to execute a recovery function and, if there is no permanent

error, it becomes the new supervisor node. If the recovery procedure fails or a permanent

hardware error is detected, the faulty node computer is switched off and replaced by one of

the spare nodes. Using this strategy, up to three permanent node failures can be tolerated,

with the on-board computer remaining operable.

Figure 2: BIRD’s Control System: software and hardware

The whole system is controlled by BOSS. The highly modular operating-system software was

implemented by using the latest software technology and the critical parts were formally

verified. The applications running on top of BOSS are implemented using object-oriented

technology, resulting in highly modular application software. To achieve a well-structured

application system, we defined a software backplane (the precursor of the middleware

EVERCONTROL) which consists of two software buses. Each application implements an

interface to each of them. One software bus is used to distribute commands to the

applications, and the second collects status information, which has to be sent down to the

control stations on Earth. The principle of a software backplane allows easy configuration of

the system by simply plugging the software components in and out of the SW backplane. This

principle was further developed to produce the EVERCONTROL middleware.

3. BOSS Description

BOSS was designed as a framework to provide a dependable real-time embedded operating

system that can be easily certified because it is very simple. Simplicity does not, however,

mean lack of functionality. Resource management, synchronization, communication, I/O and

interrupt handling and all the functions we can expect from a microkernel are there – only in

as simple as possible. BOSS offers the following features: multithreading; priority-managed

pre-emption; real-time and fault tolerance support; communication support; object-oriented

design and implementation; C++ interface; time resolution: 1 microsecond; thread switch

time: 3 microseconds (PPC at 48 Mhz); reaction time: under 3 microseconds (PPC at 48

Mhz); boot time from flash memory: under 300 milliseconds.

There are several implementations of BOSS on different platforms, e.g. PowerPC, x86,

Atmel and an on-top-of-LINUX implementation. Applications written on BOSS can run

without changes on any of these platforms. The on-top-of-LINUX implementation helps

developers to work locally on their workstation without having to use the target system. To

move to the target, they have only to recompile the code. The behaviour is the same, except

for timing requirements and time resolution, which on LINUX cannot be as exact as in the

target systems.

4. EVERCONTROL and Fault Tolerance Support

Running on top of BOSS is the EVERCONTROL middleware, which was designed to

support fault tolerance. All processes running on top of EVERCONTROL can exchange

messages asynchronously using a subscriber protocol: a process or a hardware device can

subscribe to one or more message types by name. When a process or a hardware device sends

a message of a given type (name), each subscriber to this name receives a copy of the

message. For communication purposes, the node and even the software/hardware

barriers/boundaries are transparent. The messages are distributed across these barriers. Using

this approach, we obtain very high flexibility and users do not have to differentiate between

local/remote functions or hardware and software functionality. The system can be

configured or reconfigured simply by plugging software modules or hardware devices

into/out of the middleware.

The EVERCONTROL middleware provides transparent support for fault tolerance. The

simplest example of this is a controller sending commands (messages) to a device. As a first

step, we insert the middleware between the device and the controller by implementing the

same interface on both sides of it. Neither the controller nor the device notices this

intervention. The middleware forwards the messages across node boundaries, which means

that controller and device no longer need to be located in the same node. Furthermore,

messages can be replicated if there is more than one subscriber to a message type (name).

Now we can add a monitor to hear messages of the same type, like the device. The monitor

can create a log file and/or execute an online diagnosis of the system. Again, no one will

notice this intervention (see Figure 3).

Figure 3: Middleware insertion

The next step is to replicate the controller, simply by creating several instances of it, if

possible running on different nodes. They need not know about the existence of the other

replicas. What are needed now are voters that intercept all messages to the device, compare

them and send only those that are most likely to be right (a democratic decision, e.g. two of

three) to the device. If required, it is possible to replicate the voter, too. One voter – the

worker (as in BIRD) – is in charge and the other one – the supervisor (as in BIRD) – is a hot

redundancy. The supervisor is ready to take control if the voter in charge fails to respond (see

Figure 4).

Figure 4: Middleware and voters

The routing of messages depends only on the types/names of the messages and on who is

subscribed to each name. Figure 5 shows some simple examples of useful potential

configurations.

Figure 5: Examples of message routings

References

1999: Sergio Montenegro. Buch Entwicklung sicherheitsrelevanter Systeme, Hanser Verlag,

ISBN: 3-446-21235-3

2003: Briess, K., Baerwald, W., Gill, E., Halle, W., Kayal, H., Montenbruck, O., Montenegro,

S. Skrbek, W., Studemund, H., Terzibaschian, T., Venus, H.

Technology demonstration by the bird-mission

4th IAA Symposium on Small Satellites for earth observation, April 7 -11, 2003

ISBN 3-89685-569-7

2002: Briess, K., Bärwald, W., Hartmann, M., Kayal, F., Krug, H.3, Lorenz, E., Lura, F.,

Maibaum, O., Montenegro, S., Oertel, D., Röser, H.P., Schlotzhauer, G., Schwarz, J.,

Studemund, H., Turner, P., Zhukov, B.

Orbit experience and first results of the bird-mission

53rd International Astronautical Congress The World Space Congress -2002, 10-19 October

2002 / Houston, Texas

2002: K. Briess, S. Montenegro, W. Bärwald, W. Halle, H. Kayal, E. Lorenz, W. Skrbek, H.

Studemund, T. Terzibaschian, I. Walter

Demonstration of Small Satellite Technologies by the BIRD Mission

16th Annual AIAAA/USU COnference on small satellites, Logan,Utah, USA 2002

2002: Sergio Montenegro, Volkert Barr

BOSS/Ada: An Open Source Ada 95 Safety Kit

Ada Deutschland Tagung 2002 6. 8. März 2002, Jena

