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1. Introduction 

The Standard Satellite Bus’s (SSB) core avionics system is a further step in the development 
line of the software and hardware architecture which was first used in the bispectral 
infrared detector mission (BIRD). The next step improves dependability, flexibility and 
simplicity of the whole core avionics system. Important aspects of this concept were 
already implemented, simulated and tested in other ESA and industrial projects. Therefore 
we can say the basic concept is proven. This paper deals with different aspects of core 
avionics development and proposes an extension to the existing core avionics system of 
BIRD to meet current and future requirements regarding flexibility, availability, and 
reliability of small satellites and the continuously increasing demand of mass memory and 
computational power. 

The term “core avionics system” as used by the authors of this paper is nearly synonym to 
the term “command and data handling system” (C&DH). In particular we mean a special 
system tailored to the needs of a small satellite with a computer as an integral part of this 
system. This on-board computer is also the execution platform for attitude control 
algorithms as well as for navigation an on-board intelligence. 

The main risk factors in a typical core avionics development are the complexity, software-
hardware interfaces and the difficulties to handle many different interfaces in a single 
system. The new core avionics concept targets these problems and aims to provide a very 
simple integrated solution of software and hardware. The border between both shall 
vanish. This concept can handle both; bus control and payload control in one system. 
 
The emerging and fast growing FPGA technology allows us to implement the biggest part 
of the core avionics in software, including classical CPU software and FPGA software. The 
use of fixed hardware is kept to a minimal limit. 
 
In this concept the core avionics functionality is provided by a network of services. Some of 
them are implemented in classical CPU-software, some in FPGA-software and some in 
hardware devices, for example sensors and actuators. To access any service there shall be 
no difference in how it was implemented (CPU, FPGA, hardware) and where it runs. The 
core avionics system is a distributed computer system.  No single node is required to be 
dependable. The computers are connected by a dependable hardware network which is 
the heart of the system. Software services can be distributed on all computers and may 
migrate from one to another for example in case of failures, overloading or for power 
management purposes. 
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In the same way like the hardware network, there is a software network, which 
interconnects all services, including software tasks running on the same computer, on 
different computers, FPGA programs and even hardware devices. This global software 
interconnection network is called the Middleware. The middleware is implemented in both: 
CPU-software and FPGA-software. Both implementations use the same communication 
protocol. This allows us to have only one interface type in the whole system: The 
Middleware Interface. 
 
The most effective and save way to implement a complex parallel system is to compose it 
as a network of simple sequential co-operating tasks which communicate by offering and 
consuming services. For the implementation there is no difference where the tasks will be 
deployed/execute and whether they run on a CPU or in a FPGA or which services are 
provided and/or consumed by hardware devices. The location of tasks can even change at 
run time, without requiring any explicit reaction of the other involved tasks. Tasks 
communicate with each other by using the middleware. There is only one interface to the 
middleware, which is encapsulated in messages. The residual is transparent to the user.  

 

2. Requirements for Space Applications 
The data management system on board is similar to many other embedded systems on 
ground; but is space we have very strict constraints and difficulties: 

Special requirements for space applications:  

Reiability: This property is extremely important for the data management system and is 
the main cause for its high�expenses and costs in comparison to terrestrial embedded 
systems. Three factors belong to reliability: Robustness, Self-healing (self-regeneration) 
and�fault tolerance. 

Self-healing self-regeneration): The spacecraft must be able to handle and to treat 
failures and anomalies by reconfiguration using redundant resources (reserves and spares). 
This is especially importantly for missions with long lifetime, e.g., 15 years. In these cases, 
just Self-healing using cheap components in not enough. Here we need rather very robust 
components. This originates a Trade-off: How much to invest in robustness o avoid 
failures, and how much to invest in redundancy o compensate for failures. 

Fault tolerance: Even if components are not permanently damaged, malfunctions are to 
be expected at any time. The system must be able to recognize such anomalies, to 
compensate and to correct them, best before they have wider consequences. On Earth we 
find similar requirements (and even more strict) in the case of safety-critical ystems, as 
for example railway, airplane or nuclear reactor control. Nevertheless, n the ground we are 
protected from approx. 50 km of air very well against the cosmic radiation, the spacecraft, 
however, not. This radiation causes a huge amount of data corruption (bit flips) and 
leads to quickerageing of the electronic components. Exactly as with terrestrial safety-
critical systems the data corruption must be treated, however, their frequency is higher in 
space by around the factor of 10 up to 1000; 1 to 10 bit-flippers per tag can be expected 
to occur in the board computer memory (e.g. 16 Mbytes). 

Very limited space, energy (power) and dimension resources: As with hand-held-
Devices (cellular phone, portable navigation systems, mp3-players, Organizer, cameras) the 
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system has to go very economically with these resources. Solutions for such earth-products 
can be interesting also for space missions… if they are able to survive space conditions. 

Cold / Heat: Although the spacecraft is exposed to extreme temperatures, e.g., from-170° 
to +120° Celsius, the temperature range of the data management segment is relatively 
mild. The data management segment is mostly well protected in the middle of spacecraft. 
The temperature mostly stays between +10° and +40° Celsius, which produces no 
difficulties for the electronics. With some terrestrial applications the requirements are more 
extreme, e.g., the automotive electronics must be able to work from -40 ° (winter nights) 
to +80 ° (direct sun in summer). 

Vacuum: For electronics on ground, we can use air (even ventilators) to conduct head 
away from the heat-source. In space, in vacuum it is not so simple to conduct the heat 
away. This can lead to a heat traffic jam and lead to a very irregular temperature 
distribution on the electronic components. Metal conductors must be used to transport 
heat from the boards to the main spacecraft structure. 

No gravity: This should  be no problem for the electronics and the software, but, a loose 
small metal part (e.g., a cuted wire) could freely move and cause short circuits at different 
places. We have similar problems in terrestrial applications by strong vibrations, e.g., in 
vehicles. 

Vibrations: In free fly in orbit vibrations are hardly to be expected, but during the launch 
on the rocket  for about 10 to 15 minutes, we can expect extreme vibrations up to 7-fold 
earth acceleration (g). At the separation we can expect a shock for few microseconds with 
up to 1000g. This requires especially robust hardware.  

Software complexity: As in all other IT areas, the software complexity increases too fast. 
It has reached dimensions which are hardly controllable. With today's complexity one must 
use proven software engineering methodology and a strict quality assurance program. 
These expenses for the software quality assurance are often underestimated; it is between 
50% and 80% of the complete software development const.  

Software-Uploads: Almost always the software efforts are underestimated. Hence, some 
missions start, before the software is ready. This is not a good concept and rescues many 
dangers in itself. Nevertheless, it is important to create the possibility to be able to reload 
new software or software updates. This functionality is also usual with mobile consumer 
electronics and navigation systems. Software-Uploads are necessary because it is not 
possible to foresee all situations for the spacecraft. In operation-time improvements and 
errors can be recognized and new software must installed on the spacecraft which is 
already in space. Another reason is that in the course of the mission, components are 
permanently damaged or change their working properties. It would be conceivable to have 
software which foresees all these situations. Indeed, the complexity of such a system would 
be too big. It is usual; to wait until a failure or unexpected situation is discovered to update 
the software. 

Remote diagnosis: It is not always possible that the software can recognize and identify 
all possible anomalies. Hence, a remote diagnosis will be required, so that the developers 
can diagnose the system from the ground. The software should be able to collect state 
information of all subsystems and to transmit them to the ground. This functionality is also 
used for big machines (newspaper-printers, excavators, mining machinery, packing 
machines etc.). These producer companies seat worldwide their machines, but their 
maintenance engineers can not be everywhere. They have to diagnose errors from their 
remote offices.  
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High computing performance: usually the computing performance in spacecrafts is 
around the factor from 10 to 100 slower than comparable devices on the ground. The 
demanded high reliability and limited resources excludes high computing performance. 
Today space applications are becoming more and more hungry for computing 
performance. New ways must be searched to combine high computing performance with 
high reliability and with limited resources (not only for space applications).  

 

These requirements are not new and they are also not so different to the ones found on 
terrestrial applications. However, the problem with the data processing in spacecrafts is 
that one must fulfill all these requirements at the same time.  

 

3. Tasks of the core avionics system 

The whole control of the satellite is performed by the core avionics system. Typically this 
big job is divided into the following subtasks: 

 

Command handling 

The command handling subsystem receives, validates, decodes, and distributes the received 
commands from the ground station [5]. It is responsible for generating acknowledgements, 
counting received and executed messages. It shall provide means for executing time-
tagged commands and pre-defined command lists. 

 

Data handling 

The data handling subsystem’s job is it to collect telemetry data and status information 
from different devices on a regular basis as well as on demand. It has to store this gathered 
data and to convert this data in a format compatible with the communication system, e.g. 
CCSDS and PUS [6][7]. 

 

Time management 

For time-tagged command execution and time-tagging measurements a precise time 
source is necessary. High precision oscillators are expensive. An alternative is to use a lower 
precision oscillator and to synchronise with external time sources. One possible solution is 
to use a GPS receiver to derive the time from the transmitted GPS signals. Another way is 
to use the communication system to synchronise with the ground station. 

 

Health monitoring 

Health monitoring is the surveillance of all systems and subsystems. This is typically done by 
consistency checks and watchdog timers. Another important aspect of health monitoring is 
memory scrubbing to prevent the accumulation of bit-flips induced by single-event effects. 

 

Attitude control 
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The attitude control system determines the angular position of the spacecraft. To do this it 
controls reaction wheels, magnetic torquers or thrusters. Reaction wheels can be 
accelerated or slowed down in order to rotate the spacecraft. The execution platform for 
these algorithms has to be provided by the core avionics system. 

 

Onboard navigation 

If the onboard navigation system computes the position and orbit of the spacecraft, it 
needs software and an execution platform. This platform has to be provided by the core 
avionics system. 

 

Power management 

The power management system of the spacecraft also needs control algorithms for charge 
control of the batteries and to shunt the solar cells to prevent overloading. 

 

Thermal management 

A thermal management system containing active elements like heaters or coolers needs 
control. So, if this control is performed by software to increase flexibility, decrease mass, 
volume and costs, it also needs an execution environment which has to be provided by the 
core avionics system. 

 

4. State of the art 
Figure 1 shows as example the board computer structure used in BIRD. 
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Figure 1: BIRD board computer 

This structure can be represented in a more generic way as shown in figures 2 and 3. 
Usually the protocol conversion from the CPU-interface to the different device interfaces is 
performed by an UART (as IP). 

 

 

 

Figure 2: typical board computer 
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Figure 3: typical I/O interface 

 

Figure 4 shows the typical software structure (e.g. from BIRD). 

 

 

Figure 4: typical software structure 

To improve dependability two board computers can be connected in parallel like it was 
done in BIRD (See figure 5). 
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Figure 5: two computers in parallel 

 

In this architecture of redundant control computers each of the nodes is able to execute all 
control tasks. One node (the worker) is controlling the satellite while a second node 
(supervisor) is supervising the correct operation of the worker node. If an anomaly of the 
worker node is detected by the supervisor node, the supervisor takes over the control of 
the satellite and becomes the new worker node. The faulty worker node is enforced to 
execute a recovery procedure and if there is no permanent error detected, it becomes the 
supervisor node. 

 

5. One step ahead 
The next step we did to improve this structure was a software-only step (e.g. TET). While 
the hardware structure stayed the same, the software structure was improved by adding a 
middleware (for communication). Instead of having many different interfaces, for example 
between applications and between application and I/O-drivers, there is only one interface 
for all communication in the system. The middleware provides a message-interface which 
can be used to interchange data between any entities in the system. Therefore there is no 
extra I/O- driver interface. I/O-devices are controlled by applications which are called I/O-
manager and the I/O-managers communicate with the rest of the system using the 
middleware messages. 

 

Another improvement is the inter-node communication. The functionality of the system is 
implemented as a network of applications which can be distributed among many 
computers in the system. The applications interchange middleware messages (services) 
without having to know in which node the communication partner is running. Figure 6 
shows an example (Hipercar) of communicating applications, which are distributed over 
two nodes (computers) and figure 7 shows a typical example of application. 
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Figure 6: communicating applications in two nodes 

 

 

Figure 7: communicating applications in TET 

 

6. The next step: The Middleware Switch 
The next step is to unify software and hardware in an integrated architecture. Figure 8 
shows a typical data/control flow to access I/O-devices. 
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Figure 8: typical data/control flow from devices to applications 

 

The capabilities of the FPGA (programmable hardware) emerging technology allows us to 
implement middleware functionality directly in the hardware I/O-interface to reach a 
structure like in figure 9. 

 

Figure 9: merging software and hardware in the Middleware 

 

The I/O interface (traditionally an UART) will then have on one side the required device 
interface and on the other side it will be directly integrated to the middleware protocol. 
The structure from figure 6 can then be extended to the structure in figure 10. 
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Figure 10: I/O-interfaces integrated in the Middleware 

 

Figures 11 and 12 show the hardware view of such a system. 

 

Figure 11: Middleware Switch and node Interface 
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Figure 12: a network of services 

 

The use of resources can be different from mission to mission, or from mission-phase to 
mission-phase. Resources can be used as redundancy to increase dependability or can be 
used to increase computing power. See figure 13. 

 

 

Figure 13: Use of resources 
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