
BOSS/Ada: An Open Source Ada 95 Safety Kit

A Dependable open source
embedded operating system for GNAT

Volkert Barr Dr. Sergio Montenegro
ISTI/ FG Softwaretechnik, TU−Berlin Fraunhofer Gesellschaft − FIRST
barr@cs.tu−berlin.de sergio.montenegro@first.fhg.de

Abstract: Ada has been successfully used in many dependable real−time applications, which
have undoubtedly benefit of its major strengths: The well defined language semantics [1], the
strong type checking, structuring mechanisms like packages and not to forget the Ada
Semantic Interface Standard [2] supporting the development of code analysis, verification and
testing tools. But an Ada system can not be more safe than the underlying operating and run
time system. An dependable and certified operating system involves very high license costs
and you will never see the sources. The operating system remains a black box and you
become depend of the OS provider. We aim to change this by certifying our OS and Ada/GNAT
interface and give it as open source public domain.

Because of its concurrent nature, many safety critical applications increasingly using
multithreading, which have a strong impact on the certification process and the resulting
total development costs. This is especially true for Ada applications due to its powerful
and therefore complex tasking semantics. Using the full range of Ada tasking power the
complete Ada run time system has also be a subject of the certification process. This
leaded to a definition of an Ada tasking subset called Ravenscar Profile, with a
commercial implementations used in different avionics systems. The major goals of such
a profile is to allow a runtime efficient and deterministic implementation of an Ada Runtime
System with a simple internal organization and low memory usage. BOSS will support this
profile for the open−source GNU Ada Translator (GNAT). Its current characteristics are:
preemptive, prioritized, real time multithreading, OO−framework structure, C++ and Ada
interface (in work). Thread switch time 10 microseconds on a PPC at 48 Mhz and under 1
microseconds on Pentium 500 Mhz. The time resolution is configurable 1 ms or 1
microsecond with at least 500K years linear time without overflow. The reaction time to
interrupts is less than 3 microseconds PPC at 48 MHz

Due to the fact, that complexity is the first foe of safety, BOSS is intended to be as simple
as possible, so it is easier to understand, to review, to use, to certificate, to port to other
platforms, etc. Some parts of BOSS are being verified mathematically and formally using
model checkers and theorem provers. BOSS is based on very few and simple basic
functions, which can be proved very faithfully, and these few functions are used for almost
every operation of the kernel. Furthermore BOSS is open−source, so that everybody can
look at it and find possible errors. We are currently developing two types of Ada interfaces
to BOSS GNAT:

1. An interface for a No_Ada_Tasking environment using a general Ada binding to the
BOSS primitives. This allows to write multithreading applications in Ada, without the Ada
languages tasking facilities.

2. An Ada tasking subset using the general BOSS binding as a core implementation of an

tasking subset comparable to the Ravenscar Profile. The core implementation is
integrated into to GNU Ada Runtime Architecture.

We believe that the BOSS operating system together with Ada 95 can play an important
role in future safety critical applications using open−source technologies.

Why open Source

You may think you can safe money by moving mechanical functionality to software, BUT
you may save 2 Euros in mechanical parts and pay 3 Dollars for operating system
licensees, like in picture 1; Or you have to reinvent the operating system; this this done by
many companies once and again.

Picture 1: Cost Distribution and losses

 We are working on open source software packages, including operating system, an Ada
environment and validations/verification tools. This will allow many companies and
institutes to create reliable systems in a short time and lower costs, without having to
reinvent the operating system for each project. The operating system BOSS will be
certified by the aeronautic council and made open source and public domain. This was
done never before! And this could safe the EU billions (and you thousands) of Euros of
OS−licenses every year.

BOSS: a dependable open source embedded operating system

BOSS targets a principle which the world forgot a long time ago: Simplicity.

BOSS was designed to be a dependable real time embedded operating system which can
be easily certified by different safety organizations.
Due to the fact, that complexity is the first foe of safety, BOSS is intended to be as simple
as possible, so it is easier to understand, to review, to use etc. The whole kernel can be
printed in a few pages. Some parts of BOSS are being verified mathematically and
formally using model checker and theorem provers. With the current state of the art on
formal verification, complex systems cannot be verified formally, but BOSS can be. BOSS

Software

mechanical,
pneumatical,
electronic

fi le :///antraege/fav /pres entation/ge ldbomb.g i f

is based on very few and simple basic functions, which can be proved very faithfully, and
these functions are used for almost every operation of the kernel. Furthermore BOSS is
open−source, so that everybody can look at it and find possible errors.

Currently there are 3 implementations of BOSS on different platforms: powerPC, x86, and
an on−top−of−LINUX implementation. Applications written on BOSS can run without
changes on any of these platforms. The on−top−of−LINUX implementation helps the
developer to work locally on his workstation without having to use the target system. To
move to the target he has only to recompile the code. The behaviour will be the same
except for timing requirements and time resolution which on LINUX cannot be as exact as
in the target systems.

BOSS is implemented in C++, it provides an C++ interface and an Ada interface is being
developed.

Development Environment

The application development and execution of a simulated system can be done on a
LINUX workstation. For the execution on the target system we provide a debugger
interface and serial connections to load and debug your system. Using LINUX as front−
end to the target system the whole work can be done remotely using internet. It is possible
to capture log files of the activities in BOSS in the target system and there are tools to
visualise the internal timings of your system.

Picture 2: Development System

V−24

Debuger

Internet

Front−end
Computer

Development system Target
Hardware

I/O

Picture 3: example of Task Visualization

Macro structure

BOSS is structured in layers from hardware up to the final application, each providing an
virtual view from the lower layer. This virtual view is always the same even if the more
lower layers are substituted. The bottom layer is the target hardware CPU, IO devices and
other Hardware units or a LINUX−platform simulation of the devices. This layer is for the
kernel and applications (except speed and timing granularity) transparent and can be
changed very easily.

Picture 4: Operating System Layers

Hardware, CPUIO

IOHW Dependent

Kernel

Your
application
Your
application

IO

PC Hardware IO

IOHW Dependent

Kernel

Your
application
Your
application

IO

LINUX

The second layer is the (only) hardware dependent layer. This layer implements the
functionality which is different on each platform, e.g. CPU−register load/store, low level
Hardware−Drivers and basic interrupt management. To move from one platform to
another one only this layer has to be rewritten. A small problem is the IO. The basic IO
handling is implemented in the second layer, but there are so many different devices with
different and sometimes very complex protocols. Such complex protocols should be
implemented in the application layer. An abstraction which would cover all possible
devices would bring a very high complexity and lower flexibility. BOSS provides only a
basic support for IO handling, like event propagation.

The third layer is the kernel which implements the interface for the applications. It
manages threads and resources; it will be explained later.

The fourth layer is the biggest and most complex, it implements your applications which
can do anything you need!

BOSS Kernel

The Kernel is so simple that it can be totally explained in one page:

The basic class is Thread: it produces executable objects with context, stack and own
data. They can run, be suspended, reactivated and react to time, internal and external
events.

The basic operations are lists−management. All resources are managed (sorted) in
chained lists, therefore there is no limit to their length. No element can be in two lists at
the same time. Before inserting an element in any list, it will be removed from any other
list. If it is required to have an element in several lists it is possible to use reference
entries.

There are two basic operations on any list:

insert: inserts an entry in the proper place according to a sort field. The sort field will be
compared and the new entry will be inserted before the first with higher value. e.g. if other
entries with the same value are found (e.g. same priority) the new one will be added after
these (first come first serve on same priorities).

remove: removes an entry from a list (if already there). Most of the times the remove
operation is applied to the first of the list.

The kernel lists are:

Ready list: List of threads which are ready to use CPU time, sorted (inverted) by priorities.
The first in the list has currently the CPU −− is running now. All other are waiting. The
priority is inverted internally so that the higher priority is first and 0 at the end of the list. If
the list is empty the Idle thread gets the control, which consumes all unused CPU time.

Timer list: List of threads which are waiting for a time point (time event), sorted by time.
The next thread to be awaked is at the front of the list.

Semaphores: List of threads sorted by priority. Semaphores are used to implement
monitors: to protect exclusive sections and to implement synchronisation. All threads
which are waiting to enter an exclusive section are managed in a semaphore list. The
thread with the highest priority will get the resources first.

Messages and communication lists: Messages from one thread to other are written in a
list sorted by priorities. Usually all messages have the same priority, so that the list works
like a fifo. A thread attempting to read from an empty message box will be suspended.

User lists: Applications can use the list−classes to build any kind of list for their own uses.

Picture 5: Most important Lists of Threads
Use of lists

All threads operations are implemented just by inserting and removing threads from lists:
start: creates the thread context and inserts the new thread into the ready list.
suspend: removes the thread from the ready list
resume: inserts the thread into the ready list
wakeAt: removes the thread from the ready list and inserts it into the timer list

The scheduler manages the ready list and activates the first thread found in the list. But a
small help is required from the hardware dependent layer:
transfer(): to save the context of the running thread and load the context of other thread to
give it the CPU control. The scheduler is pre−emptive. At any time if a thread (B) with
higher priority than the running thread (A) is resumed, the CPU will be taken from thread A
and passed to thread B (Transfer A −> B).

The time manager manages the hardware time gauge or interrupts and resumes threads
which are waiting for time points.
IO Drivers do the same, but with IO events/interrupts.

ReadyList, sort:priority

Scheduler

R
u

n
in

g
 T

h
re

a
d

TimerList, sort: time

TimerDriver

Id
le

T
h

re
a

d

T
h

re
a

d
s

WaitingList, sort:priority

Semaphore

Waiter IODriver

Suspended
Threads

T
h

re
a

d

Some Extra Support Classes

Following classes are not needed for the basic thread management, but they include
functions which are required very often, therefore they are supplied here.

For communication among threads there are two possibilities: 1. Synchronously: the
receiver thread will be suspended until the data arrive. For this kind of communication fifos
(message lists) and signal−boxes are used.
2. Asynchronous communication: if no message is ready the receiver is notified and can
do something else or the receiver will get the last written data. Most of the cases a thread
needs only to get the newest status information of other threads and not the whole history.
In this cases you can use an asynchronous communication buffer. All messages get a
time stamp to know the age of the received message.

Some other useful classes:
pool management
flash−memory & rom management
logwriter (for timing visualisation on the host computer)
nameserver (to find objects using names)
Timecontrol (to create loops in time)

All this classes are thread safe. If you need more than that, you can use the gnu template
library, but watch out, they are not thread safe.

Building your application

BOSS is build as a frame work which you can specialise to fulfil your requirements. The
framework technology is a further step following the object oriented technology where the
functionality is provided by OO methods in classes, the user can employ each class as it
is, or he can tailor (adapt) the class to his own needs, by means of inheritance and
methods/operators overloading.

The framework technology offers complete adaptable structures of classes. A framework
is composed of several classes in a structure with different relationships: inheritance,
references and contention. The whole structure has a specific functionality. The user can
adapt its functionality to his needs as follows: Some classes in the structure provide the
adaptation interface for the user. Other classes offer a function interface or support the
whole framework function. To adapt the functionality of the framework to his need, the
user writes new classes, which inherit from the adaptation interface classes (subclasses).
The adaptation interface methods should be overloaded with the user methods and
functionality in order to integrate the user functionality into the framework. The new (user)
subclasses are integrated automatically (by inheritance) into the structure. The framework
functionality is thus extended by the desired functionality and adapted to the user’s needs.

The most important adaptation interface class is the "Thread" class in BOSS. With this
class the user can implement his tasks with own context and stack. The user should write
his desired functionality in a subclass and overload the method "run()" which else does
nothing per default. After the thread is started it will be written in the ready list and will run
as soon as possible, according to its priority and other ready threads (its position in the
list).

The TimerDriver should not be extended, it can be used to resume (reactivate) threads at
a determined time point. The EventManager and IODrivers are like the TimeDriver, they
resume threads after the expected event arrived, e.g. software events, timer events,
external events like interrupts etc.

Picture 6: BOSS Framework

Example of use

external Thread xx;
class TestThread: public Thread { // Thread produces an active object
 void run () {
 while(1) {
 {.... do something }
 yield(); // other thread, same priority will get the CPU
 {.... do something }
 suspend(); // not run anymore until someone resumes me
 {.... do something }
 suspendFor(1000); // TimerDriver will resume me in 1000 ms.
 resume(xx); // I resume the Thread xx, which I know.
 }
 }
};
/ * * Anot her exampl e: * * /

c l ass Ot her Test Thr ead : publ i c Thr ead {
voi d r un () {

 Semaphor e moni t or ;
 Ti meCont r ol t i meCont r ol ; / / To i mpl ement t i me l oops
 t i meCont r ol . st ar t At (5000) ; / / Ti me poi nt f or t he f i r st t i me
 t i meCont r ol . ever y(100) ; / / Cycl us t i me
 whi l e(1) {
 t i meCont r ol . wai t () ; / / wai t accor di ng t o st ar t and cycl us
 { do somet hi ng }
 moni t or . ent er () ; / / pr ot ect ed ar ea,
 { do somet hi ng }
 moni t or . l eave() ;
 }
 }
};

/ * * Cr eat e 6 t hr eads or appl i cat i ons * * * /

Test Thr ead a, b, xx;
Ot her Test Thr ead x, y, z;

Interrupt Structure

The threads can be synchronized among them by using semaphores, suspends, resumes
and THREAD_ATOMAR constructs. But Hardware interrupts can occur at any time. It is
possible to lock/disable interrupts, but this should be avoid. Normally the interrupts are
allowed at any time to ensure the fastest interrupt reaction.

To avoid problems and data inconstancies when interrupts occurs, the system is divides in
two independent work areas (worlds): The threads world, where the applications reside
and the interrupt area, which is activated asynchronously from the threads and
applications, by hardware events, like timers, i/o devices, alarms etc.

Communication between this two worlds is performed by using extra asynchronous
communications buffers and fifos. This elements has two sides: one to write data and one
to read data. This elements are implemented in such a manner, that both sides can be
used asynchronously from each other. No explicit lock or synchronization is required. To
pass complex data from one world to the other such elements are used. They are extra
design to couple the interrupt world and the threads world, but they can be used among
threads too. Simple data which can be written/read atomic (like an integer or a character),
can be used in a manner that one side only writes and the other only reads each of this
variable. This is a safe asynchronous communication too.

Picture 7: Interrupt − Thread Worlds

The Thread world will never call or interrupt the interrupt world, which has the highest
priority in the system. The thread world can be interrupted at any time by interrupts and
after the interrupt execution the interrupt server may "return" (jump) to the dispatcher
instead than to the interrupted place if a redispatch is required. The interrupted address
will be saved as part of the context of the interrupted thread. The implementation of this
jump from the interrupt world to the dispatcher is a critical operation and is hardware
dependent...

The Ada Environment

Why Ada?

As mentioned above, Ada offers a reasonable set of tools to write safer software including

� the strong typing capability and a rich set of arithmetic types,
� access types with no pointer arithmetic (no footshooting with uncontrolled memory

access)
� defining external interfaces (formal definitions/representation clauses for

memory/hardware access) and a standardized way to interface languages like C and
FORTRAN,

� no need of object−oriented programming: In the safety community is widely accepted
that the timing and resource usage of object−oriented programs are less deterministic
and hard to analyse. Due to Ada’s orthogonal language structure it is easy to restrict or
even abandon object−oriented concepts like inheritance and polymorphism (in Ada
terms run−time dispatching),

� Ada offers a highly useable set of decomposition mechanisms using generics,
packages, public and private child packages,

� Last not least, the Ada Semantical Interface Standard [2] makes it possible to

Interrupt World

Application/thread
World

Hardware Interrupts

AsyncFIFO
AsyncBuf
Atomar Vars

implement code analysis tools to provide language subset checkers and annotation
systems.

For safety critical software Ada is and should be the language of choice. For this reason,
we decided to develop an Ada Binding to BOSS.

The Ada BOSS Binding

BOSS was designed with object−oriented decomposition in mind, but makes very few
usage of complicated C++ features (e.g. for method redefinition and dynamic dispatching)
to make it understandable and analysable. For this reason, the mapping to Ada was
straight forward. Mainly all important OS Kernel abstractions were lifted to the Ada
environment using the C/C++ interfaces facilities of the GNAT Compiler 3.13p. Our GNAT
Compiler is restricted not to use Ada Tasking (No_Run_Time).

BOSS package structure

All tagged types directly map onto the corresponding C++ classes. Some BOSS classes
are completely hidden to Ada programs. Our present package structure consists of the
following ones:

� Boss_Kernel:Consists of a event_loop method to start the event processing (system
start),

� Boss_Kernel.Base_Type: Declares a basic set of data types for time, thread priorities.
� Boss_Kernel.Event_Type: Declares an event type used for event trigger identification,
� Boss_Kernel.Thread_Type: Declares a tagged type thread with primitive operations

for priority setting and reading, thread suspension and resuming. An additional
controlled thread type can be used for controlled initialization. At package level we offer
typical operations to control relative and absolute delays and thread yielding.

� Boss_Kernel.Time_Control_Type: The declared Time_Control type can be used to
synchronize threads with a time raster for starting a thread in, at and every point of
time,

� Boss_Kernel.Time_Manager_Type: The time manager type administrates the timerlist
of threads waiting for a timepoint. The package also offers features to access a system
clock, different converters between timer and clock schemes.

System Initialization/Restrictions

The following initialization scheme is used for system start up: All threads must be
declared only at library level and threads can be initialized while package elaboration
(controlled type) or explicitly (elaborate package body or method calling from the main
unit). All threads staying forever and do not terminate. Dynamic allocation of threads is
forbidden. All these restrictions are similar to the ones defined for the Ravanscar profile
[3]. After elaborating the packages, from the main unit an event handler routine must be
called to start systems work.

Examples of use

Let us now see some small examples of typical real−time abstractions and how to map
them to BOSS features. An application specific thread can simply defined by extending
the base type Boss_Kernel.Threads_Types.Thread and overriding its primitive
operation Run():

type Application_Task is new
 Boss_Ker nel . Thr ead_Types. Thr ead with . . . end;

procedure Run
 (Sel f : in out Appl i cat i on_Task) ; −− r edef i ni t i on of r un

� A periodic task with absolute delay (Ada style)

procedure Run
 (Sel f : in out Application_Task)
is
 Per i od : Ti me : = Mi l l i seconds(50) ;
 Next _St ar t : Ti me;
begin
 Next _St ar t : = Get _Ti me;
 loop
 Next _St ar t : = Next _St ar t + Per i od;
 −− do somet hi ng
 Suspend_Unt i l (Next _St ar t) ; −−del ay unt i l Next _St ar t
 end loop;
end;

� A periodic task using a TimeControl and a Semaphore−Object.

procedure Run
 (Sel f : in out Application_Task)
is
 TC : Ti meCont r ol ;
 Sem : Semaphor e;
begin
 −− of f set per i od
 St ar t _At _Ever y(TC, Seconds(60) , Mi l l i seconds(500)) ;
 loop
 Wai t (TC) ;
 Ent er (Sem) ;
 −− do somet hi ng
 Leave(Sem) ;
 end loop;
end;

� A sporadic task waiting for an event of a IODriver−Object.

procedure Run
 (Sel f : in out Application_Task)
is
 I O : I ODr i ver ;
begin
 Open(I O, „ GPS“) ;

 loop
 Read(I O, Char act er s) ;

 −− do somet hi ng

 end loop;
end;

Interfacing C++ from Ada

Currently there exist no standardized way to map C++ classes from the Ada world.
Therefore we need to experiment to understand how the mapping of the GNAT Compiler
works [4]. GNAT offers some pragmas to interface C++ at class level (pragma
CPP_Class, CPP_Constructor, CPP_Vtable, Import, ...). The name mangling problem was
solved by hand.

We had some minor problems to overcome:

Run−Time Dispatching calls trigged from C++ does not work. This is comprehensible,
because the C++ dispatching table does not know of any redefined operation on the Ada
side. To overcome this problem, we decided to export a base operation of an Ada tagged
type to the C++ world and do all the dispatching on the Ada side.

Forward declaration does not work: Some BOSS C++ classes uses attributes in a forward
declared manner to model references to objects of its own type. The mapping of such a
structure to Ada was refused by the GNAT Compiler (looks like a compiler bug).

Keeping C++ class layout: The need of keeping the C++ class storage layout of all non
static class attributes, leads to tagged types where all − the public and the private ones −
class attributes were accessible by the type clients. Because of the different visibility
schemes of C++ and Ada (Ada at package level, C++ at class level) this is
understandable, but not very nice. Hiding those attributes works with a further indirection.
We leave this open.

Status and Future Work

Currently our Ada programs are running on the BOSS Simulation Environment (see
above) which is hosted on a Linux/x86 workstation. We now have to finish our GNAT
crosscompiler for PowerPC to compile our programs for a fault tolerant multi board
system. This board is succesfully used in the satellite project BIRD [5]. When succeeding
the next step is to understand and adapt the GNAT Runtime Architecture
(GNARL/GNULL) to integrate the current BOSS interface to fulfill the semantics of the
Ravenscar profile.

The portability of both the BOSS kernel and the GNAT compiler leads to an interesting
open source development platform for safety related applications. With some additional
tool support, we think it could be a real "Open Source Ada Safety Kit". What coming into
mind is the application of some formal techniques for example model checking behavior
abstractions of the Ravenscar tasking model (see [6, 7]) and the simulation of real−time
and scheduling aspects (Ada Software Simulation considering scheduling, execution times
and task attributes) [8, 9] together with continuos components descriptions modeling
physical processes [10] controlled by the embedded system under development. Such a
simulation system is currently developed in his ph.d. work by one of the authors.

Literature

[1] Taft, S.T. and Duff, R.A., eds (1995). Ada 95 Reference Manual. LNCS 1246,
Springer Verlag.

[2] International Standards Organization. ISO/IEC 15291 Ada Semantic Interface
Specification (ASIS), 1999.

[3] Alan Burns and Brian Dobbing. The Ravenscar Profile for high integrity real−time
programms. Proceedings of ACM SigAda Annual Conference, ACM Press.

[4] Ada Core Technologies Inc., GNAT Reference Manual, Version 3.13p,
http://www.gnat.com.

[5] Sergio Montenegro, Wolfgang Bärwald. BIRD− Spacecraft Bus Controller. Small
satellites Workshop 2001, IAA 2001.

[6] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
Volume 126, 1994.

[7] Alan Burns, Andy Wellings. How to Verify Concurrent Ada Programs. The Application
of Model Checking, Ada Letters, June 1999.

[8] Sven Lutz, Volkert Barr. Durchgängige Modellierung objektorientierter
Echtzeitsysteme. in Ada und Software−Qualität, Ada Deutschland Tagung 2001,
Shaker Verlag, 2001.

[9] Frank Oppenheimer and Guido Schumacher. OOCOSIM − objektorientierte
Spezifikation und Simulation eingebetteter Realzeitsysteme, Workshop
Objektorientierung und sichere Software mit Ada, Institut für Angewandte Informatik,
FZI Karlsruhe, 1999.

[10] T. Ernst, C. Klein−Robbenhaar, A. Nordwig, T. Schrag. Modellierung und Simulation
hybrider Systeme mit Smile. Informatik Forschung und Entwicklung 15 (2000),
Springer−Verlag, Berlin, Heidelberg, 2000.

