

The 4S Symposium 2014 � F. Kempf, A. Hilgarth, A. Kh eirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 1

RELIABLE NETWORKED DISTRIBUTED ON-BOARD DATA HANDLING USING A
MODULAR APPROACH WITH HETEROGENEOUS COMPONENTS

Florian Kempf(1), Alexander Hilgarth(2), Ali Kheirkhah(3), Tobias Mikschl(2), Tristan
Tzschichholz(3), Sergio Montenegro(2) and Klaus Schilling(1)

(1)Department of Robotics and Telematics, University of Würzburg, Am Hubland, D-97074

Würzburg, Germany; {kempf,schi}@informatik.uni-wuer zburg.de
(2) Department of Aerospace Information Technology, University of Würzburg, Am Hubland,

D-97074 Würzburg, Germany; {alexander.hilgarth,tobi as.mikschl,sergio.montenegro}@uni-
wuerzburg.de

(3) Zentrum für Telematik, Allesgrundweg 12, D-97218 Ge rbrunn, Germany ;

{ali.kheirkhah,tristan.tzschichholz}@telematik-zentrum.de

ABSTRACT

Robustness is a key system design criterion for on-board data handling of modern space vehicles.
This contribution emphasizes for these objectives a distributed networked approach, which introduces
a high degree of flexibility and reliability, in particular also for vehicle formations. The architecture
is based on universal wireless inter-system links, which can directly access internal subsystems from
outside and thus supports sharing of distributed resources of processing and storage capacities. For
intra- and inter-vehicle communication a related concept is proposed and simulated by Omnet++. At
proof of concept level for system control the RODOS embedded operating system combined with
MATLAB/Simulink and the �Building Blocks Execution Platform (BBEP)� was employed. On this
basis future hardware demonstrations will be prepared.

1. INTRODUCTION

Performance increases of modern data handling systems support autonomous reaction capabilities
on-board to optimize mission results. Nevertheless, the increasing on-board responsibilities in the
challenging space environment require robust and fault-tolerant data processing approaches to
guarantee reliable spacecraft operations. State of the art spacecraft technology for on-board data
handling purposes is based on multiple specialized computers organized in a hierarchical way [3],
[15]. Each sensor or actuator module brings its own processing power, and few central processing
units connect the subsystems (Figure 1). The communication in this network of computing nodes is
generally hardwired and various types of bus systems are used, like space-wire, SPI or MIL standards.
While this system design is straight forward and well tested, it has several drawbacks. Every
computing unit for a certain subsystem has to be designed powerful enough to handle subsystem peak
usage, but will be idle most of the time. Thus the full available processing capacity is not exhausted
and excess processing power is wasted, without the possibility to use it for other, more demanding
tasks.

Another problem arises, if the central computing unit fails. As all other subsystems are hardwired to
this unit and external access to sensors and actuators is not possible, the whole system fails. Therefore

The 4S Symposium 2014 � F. Kempf, A. Hilgarth, A. Kh eirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 2

satellite systems use redundant central units, decreasing the overall efficiency and not preventing
failures if an inherent system error causes redundant central units to fail.

Decentralized approaches offer an alternative architecture onboard a single spacecraft [4], but are
even more relevant for multi-spacecraft systems, in particular for the emerging satellite formations
[2], [11]. At University Würzburg�s Experimental sa tellite program (UWE) redundant micro-
processor systems [1] for reliable on-board operations were successfully tested with UWE-3 since
November 2013 in orbit. Future missions will address Pico-satellite formations with research on
relevant technologies already on the way [10], [12]. Here it would be very attractive to use resources
from other spacecraft of the formation, when needed.

 In this framework the project YETE (physical distributed control in space), addresses a novel
approach to on-board data relying on a decentralized system composed of distributed networked data
processing modules at hardware and software level, to achieve highly reliable operations [8].

The remainder of the work is organized as follows. First the general YETE concept and a suitable
operating system for the nodes inside YETE are introduced. Subsequent an idea to simulate
communication among the individual nodes in Omnet++ is proposed. Afterwards a solution to
integrate Simulink control into the system as well as a proof of concept is presented. Finally the
results are summarized and planned future work is discussed.

2. YETE OBJECTIVES

In the project YETE, the rigid hardwiring is replaced by wireless communication (inside the
spacecraft as well as towards other companion satellites), and the computational capacity is
concentrated into so-called computing nodes. The individual subsystems are reduced in complexity
to the absolute minimum; sensor-/ actor-specific processing now takes place on the computing nodes
(figure 2).

Figure 1: State of the art: One or more board computers are connected to �smar t� sensors and actuators (such
as GPS receivers, reaction wheels, star trackers, etc.) by a bus system or individual wires.

The 4S Symposium 2014 � F. Kempf, A. Hilgarth, A. Kh eirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 3

Figure 2: The YETE concept: Wireless links are used to connect a cluster of computing nodes to very simple
sensors/ actuators. All sensor- or actuator-specific processing now takes place in one or more computing nodes.

This approach has several advantages. First of all, it provides modularity at the software- and
hardware level. On the hardware level, the modularity is achieved by the wireless links, which make
it unnecessary to think about physical connectors. Components and modules can be exchanged
without problems. On the software level, the Building Blocks Execution Platform (BBEP) is a set of
functionally independent software modules (e.g., IMU driver, reaction wheel driver, star sensor
buffer, etc.). This modular structure allows for task migration among the nodes regarding intra system
connections as well as inter system connections. Overall, this facilitates a fast adaption to changing
mission requirements.

The most prominent advantages resulting from this modular architecture are: capability of hot-
swapping of all nodes in the system (actuators, computing nodes, sensors), the sharing of resources
(most importantly, computational power), higher fault tolerance (due to redundant systems and the
ability to access sensors and actuators of a system from the outside when required), and sensor data
fusion from multiple systems.

In the YETE project, a demonstrator is realized for this vision, which will be built in five steps:

1. Implementation of sensors/ actuators (wired connection), reflecting the state-of-the-art.

2. The local processing power is removed from the sensors/ actuators and moved into a
computing cluster. This will demonstrate the capability of the system to distribute tasks, as
well as fail-over in case a computing node fails.

3. The wired connection is replaced by a suitable wireless technology (such as Bluetooth,
ZigBee, etc.) This will demonstrate the feasibility of the distributed system architecture on a
single satellite/ system level.

4. A distributed multi-satellite system is built which will demonstrate solving a problem in a
distributed fashion. This will demonstrate the communication between two or more systems,
and more importantly, the communication between sensors/ actuators and a set of foreign
computing nodes (i.e., computing nodes of another satellite/ system).

5. The distributed system is enhanced by a control facility to command the distributed system
from outside, in order to demonstrate seamless operation during remote control phases, as
well as autonomous control.

The 4S Symposium 2014 � F. Kempf, A. Hilgarth, A. Kh eirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 4

2.1 RODOS Framework

The distributed system of the YETE project will be hardware independent. To achieve this goal an
operating system is used. Our requirements for this system are:

1. The development boards / processors we want to use have to be supported.

2. The operating system has be robust out of the box and avoid unnecessary complexity to enable
a simpler debugging process.

3. High level of hardware abstraction is desirable, as we want to develop our system hardware
independent.

4. If possible the operating system shall be space proven.

After some consideration the real-time operating system RODOS was chosen, because it adheres to
the requirements mentioned above and includes additional features, which benefit to our whole
system and integrate nicely with our proposed system design.

RODOS is light-weight (size 1MB on x86 architecture) and developed by the means of �keep it
simple�. But with its simplicity it also brings a h igh level of fault tolerance and flexibility [7]. It is
space proven in different spacecraft and systems and is going to be used in various spacecraft within
the next two years. As RODOS is open source, it can be freely modified and enhancements made
within this project can be ported back to it, benefiting the open source project.

RODOS includes a preemptive scheduler for concurrent task execution. Tasks can have different
priorities. The task with the highest priority is executed. If multiple tasks have the same priority a
round-robin scheduling method is used, in which every task gets an equal share of processing time.
To enable communication between different tasks RODOS includes a messaging system, which
follows the publisher-subscriber principle. This means that a unique topic is attributed to all data that
is exchanged between individual tasks. Tasks can subscribe to these topics or publish data on them.

The message-system which enables communication between tasks in a running system, can also be
extended across system borders. The physical link between different systems or nodes is handled by
so called link-interfaces. These interfaces are responsible for the data transmission over the hardware
underlying the respective link, e.g. UART, CAN, UDP, etc.

RODOS also provides a Hardware Abstraction Layer (HAL) for typical embedded hardware
interfaces. This layer enables us to program hardware drivers for external sensors and actuators target
platform independent (figure 3).

To allow task-distribution over the different nodes and to encapsulate functionalities in exchangeable
modules, a building block system on top of RODOS is used. Building Blocks are software
components, which implement a certain functionality like sensor reading or fusion and communicate
with other parts of the software via the messaging system. This encapsulation simplifies the
development process, because building blocks can be developed independently of each other and can
be reused more easily.

The 4S Symposium 2014 � F. Kempf, A. Hilgarth, A. Kh eirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 5

3. COMMUNICATION SIMULATION CONCEPT

As YETE is a highly distributed concept, communication between the individual system nodes plays
a major role in the overall system behavior. The transmission channel properties, such as delay, bit
error rate or packet loss greatly influence the ability to perform distributed system control and the
way in which tasks can be distributed or shared among nodes in the network. Therefore, to allow the
testing of different control algorithms, task distribution concepts and RF link hardware under
controlled conditions, a communication simulation concept for YETE was developed. We decided to
use the discrete event simulator Omnet++ [14], [13] as simulation environment, because it satisfies
the following necessary requirements.

3.1. Simulation requirements

The first requirement we imposed on the simulation is, that it should substitute the simulated real
system components as accurately as possible. One prerequisite for that is, that the simulation is
transparent for all not simulated components in the system. In a later project stage the simulation can
then just be substituted by real hardware without the need for changes to the not simulated system
components. To achieve this we integrated the Omnet++ simulation seamlessly into the RODOS
communication layer, this can be seen in figure 4 and figure 5.

Figure 4: Integration of Omnet++ into the RODOS node communication layer.

Figure 3: Relationship between RODOS platform independent link-interfaces and platform dependent HAL
layer.

The 4S Symposium 2014 � F. Kempf, A. Hilgarth, A. Kh eirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 6

Figure 5: Integration of Omnet++ into the YETE system.

Furthermore the simulation itself should introduce minimal simulation overhead into the system. For
this purpose we designed the simulation to be run on a powerful external dedicated PC, to limit the
influence of simulation calculations on the simulated system process. We also extended the Omnet++
Real Time Event Scheduler to handle real time events coming from a RODOS-to-Omnet++ Gateway,
which will be further explained later on.

The second requirement for the simulation is that it should speed up the design �� evaluation
cycle throughout the project duration. Omnet++�s ability to reuse simulation components, to
structure them in a hierarchical way and to easily define large complex nets of connected entities
(e.g. spacecraft, Mission Control Centers (MCC) or rovers) via its meta description language NED
is essential in this regard [13]. By using Omnet++ we also have several extensive component
libraries (e.g. INet) at our disposal, which contain many commonly used network components (e.g.
WLAN links, Ad-Hoc routing components, OSI Layer implementations, etc.).
The last requirement we regarded as important is the ability to perform online and offline data
visualization and collection. The simulation concept supports both, visualization of the current
satellite and MCC state (e.g. position, connectivity, etc.) live in a map, as depicted in figure 6, as
well as using Omnet++�s event logging facility to collect and store simulation statistics for later use.

The 4S Symposium 2014 � F. Kempf, A. Hilgarth, A. Kh eirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 7

Figure 6: Visualization of the spacecraft system network inside Omnet++. Satellite to MCC link cover-age of
the satellites is marked by a red circle.

3.2. RODOS to Omnet++ Gateway

Integration of external real-time applications into Omnet++ has already been done before [6],
however none of the proposed concepts apply in this case. The reason is, that the external application,
RODOS in this case, will be running on several distributed nodes, some of which are embedded
devices. Therefore the link between the RODOS Operating System and the Omnet++ communication
simulation consists of two parts, one is platform dependent and is running on the RODOS side and
one is platform independent and is running on the Omnet++ side. The communication between the
two parts is done via the TCP/IP protocol, preferably over an Ethernet cable connection. The part on
the RODOS side is implemented as a RODOS hardware link-interface (omnetpp-linkinterface) over
which RODOS topics can traverse. This link-interface can later be exchanged by link-interfaces of
real hardware, like one of a Bluetooth Low Energy (BLE) connection. This way the simulation
appears transparent to the RODOS system and to the other software Building Blocks (BBs) running
on the node. On the Omnet++ side a RODOS gateway module receives the topic data from one or
more RODOS nodes via a two way tcp connection and forwards the topics to exactly one simulated
hardware link inside the simulation environment. If the RODOS gateway module represents an intra-
satellite link it also broadcasts a special satellite state topic to selected modules inside the satellite
module which need the current satellite state, e.g. the satellite position or attitude, for their operation.
One example for such a module is the satellite mobility module, which updates the satellite position
inside the visualization map and which is also used in the signal strength calculations of the radio
transmission links (e.g. inter satellite and satellite to MCC links). The connection concept is
exemplary shown in figure 7, in which three nodes of a simple satellite, a Simulink RODOS node, a
sensor and an actuator node communicate over a simulated intra satellite radio link.

The 4S Symposium 2014 – F. Kempf, A. Hilgarth, A. Kheirkhah, T. Mikschl, T. Tzschichholz, S. Montenegro, K. Schilling 8

To facilitate realtime event processing and to handle new received RODOS data inside Omnet++ we
extended the realtime socket scheduler of Omnet++, so that between two scheduled events, it
performs a blocking select operation on the sockets of all RODOS gateways in the network and lets
them handle newly received topic data if a socket event occurred.

Figure 7: Omnet++ Satellite module (on the left) and 3 RODOS nodes belonging to the same satellite which
are connected to the RODOS gateway module of the satellite intra-sat link.

The Omnet++ satellite module shown in figure 7 contains three RODOS gateways and the three
corresponding radio links, an intra-satellite link, an inter-satellite link and a satellite to MCC link.
The intra satellite link has a simulated Bluetooth Low Energy transmission channel connecting the
module to itself. This simulates the intra satellite communication, i.e. the communication among the
RODOS nodes which belong to a single satellite. Inter satellite and Satellite to MCC radio links rely
on a free space transmission model and the distance between sender and receiver to determine the
received signal strength and transmission delay.

Figure 8: Mission Control Center Module in Omnet++.Our extensions to the standard INet host

