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ABSTRACT

Robustness is a key system design criterion fobaard data handling of modern space vehicles.
This contribution emphasizes for these objectiveistibuted networked approach, which introduces
a high degree of flexibility and reliability, in gacular also for vehicle formations. The architeet

is based on universal wireless inter-system limkgch can directly access internal subsystems from
outside and thus supports sharing of distributedueces of processing and storage capacities. For
intra- and inter-vehicle communication a relatedaapt is proposed and simulated by Omnet++. At
proof of concept level for system control the ROD@8bedded operating system combined with
MATLAB/Simulink and the “Building Blocks ExecutioRlatform (BBEP)” was employed. On this
basis future hardware demonstrations will be preghar

1. INTRODUCTION

Performance increases of modern data handlingragsseipport autonomous reaction capabilities
on-board to optimize mission results. Neverthel#ss,increasing on-board responsibilities in the
challenging space environment require robust amdt-falerant data processing approaches to
guarantee reliable spacecraft operations. Statbeofart spacecraft technology for on-board data
handling purposes is based on multiple specialcadputers organized in a hierarchical way [3],
[15]. Each sensor or actuator module brings its pwatessing power, and few central processing
units connect the subsystems (Figure 1). The conwation in this network of computing nodes is
generally hardwired and various types of bus systam used, like space-wire, SPI or MIL standards.
While this system design is straight forward andl vested, it has several drawbacks. Every
computing unit for a certain subsystem has to Isegded powerful enough to handle subsystem peak
usage, but will be idle most of the time. Thusfilieavailable processing capacity is not exhausted
and excess processing power is wasted, withoupdbsibility to use it for other, more demanding
tasks.

Another problem arises, if the central computing tals. As all other subsystems are hardwired to
this unit and external access to sensors and acsuatnot possible, the whole system fails. Toreef
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satellite systems use redundant central units,edsorg the overall efficiency and not preventing
failures if an inherent system error causes reduinckentral units to fail.

Decentralized approaches offer an alternative tecture onboard a single spacecratft [4], but are
even more relevant for multi-spacecraft systemgairticular for the emerging satellite formations
[2], [11]. At University Wirzburg’'s Experimental tedlite program (UWE) redundant micro-
processor systems [1] for reliable on-board openatiwere successfully tested with UWE-3 since
November 2013 in orbit. Future missions will addrésco-satellite formations with research on
relevant technologies already on the way [10], [HYre it would be very attractive to use resources
from other spacecraft of the formation, when needed

In this framework the project YETE (pical distribuéd cortrol in spae), addresses a novel
approach to on-board data relying on a decentrhBystem composed of distributed networked data
processing modules at hardware and software levakhieve highly reliable operations [8].

The remainder of the work is organized as follokisst the general YETE concept and a suitable
operating system for the nodes inside YETE areothiced. Subsequent an idea to simulate
communication among the individual nodes in Omnets-#proposed. Afterwards a solution to
integrate Simulink control into the system as veadla proof of concept is presented. Finally the
results are summarized and planned future worksudsed.

Smart device

Computing node Smart device
Smart device
Computing node Smart device
Smart device

Figure 1: Stee of the art: One or more board computers are connected td™se@ors and actuators (s
as GPS receivers, reaction wheels, star trackers, etc.) by a tem sysndividual wires.

2.YETE OBJECTIVES

In the project YETE, the rigid hardwiring is reptac by wireless communication (inside the
spacecraft as well as towards other companion lisaes@l and the computational capacity is
concentrated into so-calledmputing nodesThe individual subsystems are reduced in comgylexi
to the absolute minimum; sensor-/ actor-specifacpssing now takes place on the computing nodes
(figure 2).
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Figure 2: The YETE concept: Wireless links are usecbnnect a cluster of computing nodes to vanpss
sensors/ actuators. All sensor- or actuator-spagificessing now takes place in one or more computdes.

This approach has several advantages. First ofitghfovides modularity at the software- and
hardware level. On the hardware level, the modyl&iachieved by the wireless links, which make
it unnecessary to think about physical connectG@@nponents and modules can be exchanged
without problems. On the software level, the BuilgiBlocks Execution Platform (BBEP) is a set of
functionally independent software modules (e.g.UlMriver, reaction wheel driver, star sensor
buffer, etc.). This modular structure allows fakanigration among the nodes regarding intra system
connections as well as inter system connectionsrdlly this facilitates a fast adaption to changing
mission requirements.

The most prominent advantages resulting from thiglutar architecture are: capability of hot-
swapping of all nodes in the system (actuators,pegimg nodes, sensors), the sharing of resources
(most importantly, computational power), higherlfaalerance (due to redundant systems and the
ability to access sensors and actuators of a sylstemthe outside when required), and sensor data
fusion from multiple systems.

In the YETE project, a demonstrator is realizedtlfas vision, which will be built in five steps:
1. Implementation of sensors/ actuators (wired conoextreflecting the state-of-the-art.

2. The local processing power is removed from the @®hsactuators and moved into a
computing cluster. This will demonstrate the caliigbof the system to distribute tasks, as
well as fail-over in case a computing node fails.

3. The wired connection is replaced by a suitable les&® technology (such as Bluetooth,
ZigBee, etc.) This will demonstrate the feasibibifythe distributed system architecture on a
single satellite/ system level.

4. A distributed multi-satellite system is built whietill demonstrate solving a problem in a
distributed fashion. This will demonstrate the commingation between two or more systems,
and more importantly, the communication betweersset actuators and a set of foreign
computing nodes (i.e., computing nodes of anotatsllge/ system).

5. The distributed system is enhanced by a contrdlitiato command the distributed system
from outside, in order to demonstrate seamlessatiparduring remote control phases, as
well as autonomous control.
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2.1 RODOS Framework

The distributed system of the YETE project will terdware independent. To achieve this goal an
operating system is used. Our requirements forsiysgem are:

1. The development boards / processors we want thaseto be supported.

2. The operating system has be robust out of the bd»agoid unnecessary complexity to enable
a simpler debugging process.

3. High level of hardware abstraction is desirablewaswvant to develop our system hardware
independent.

4. If possible the operating system shall be spacegoro

After some consideration the real-time operatingieay RODOS was chosen, because it adheres to
the requirements mentioned above and includes iadditfeatures, which benefit to our whole
system and integrate nicely with our proposed systesign.

RODOS is light-weight (size 1MB on x86 architecjueand developed by the means of “keep it
simple”. But with its simplicity it also brings agh level of fault tolerance and flexibility [7]t Is
space proven in different spacecraft and systemssagoing to be used in various spacecraft within
the next two years. As RODOS is open source, ittmireely modified and enhancements made
within this project can be ported back to it, bénmef the open source project.

RODOS includes a preemptive scheduler for concumask execution. Tasks can have different

priorities. The task with the highest priority iseeuted. If multiple tasks have the same priority a
round-robin scheduling method is used, in whichrgvask gets an equal share of processing time.
To enable communication between different tasks RSOncludes a messaging system, which
follows the publisher-subscriber principle. Thisans that a unique topic is attributed to all datd t

is exchanged between individual tasks. Tasks chscsibe to these topics or publish data on them.

The message-system which enables communicatiorebattasks in a running system, can also be
extended across system borders. The physical éhkden different systems or nodes is handled by
so called link-interfaces. These interfaces arpaesible for the data transmission over the hardwar
underlying the respective link, e.g. UART, CAN, UDd®c.

RODOS also provides a Hardware Abstraction LayeAlL(Hfor typical embedded hardware
interfaces. This layer enables us to program hamldivers for external sensors and actuatorsttarge
platform independent (figure 3).

To allow task-distribution over the different nodesl to encapsulate functionalities in exchangeable
modules, a building block system on top of RODOSused. Building Blocks are software
components, which implement a certain functiondikgy sensor reading or fusion and communicate
with other parts of the software via the messagggtem. This encapsulation simplifies the
development process, because building blocks caleweloped independently of each other and can
be reused more easily.
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Figure 3: Relationship between RODOS platform independentr{hekﬁaces and platform dependent HAL
layer.

3. COMMUNICATION SIMULATION CONCEPT

As YETE is a highly distributed concept, communmatetween the individual system nodes plays
a major role in the overall system behavior. Tla@smission channel properties, such as delay, bit
error rate or packet loss greatly influence thditgiliio perform distributed system control and the
way in which tasks can be distributed or sharedregmmdes in the network. Therefore, to allow the
testing of different control algorithms, task distition concepts and RF link hardware under
controlled conditions, a communication simulatiomecept for YETE was developed. We decided to
use the discrete event simulator Omnet++ [14], HsSkimulation environment, because it satisfies
the following necessary requirements.

3.1. Simulation requirements

The first requirement we imposed on the simulatgrthat it should substitute the simulated real
system components as accurately as possible. Gmeqpisite for that is, that the simulation is
transparent for all not simulated components irsirsgem. In a later project stage the simulation ca
then just be substituted by real hardware withbatrieed for changes to the not simulated system
components. To achieve this we integrated the Omnsimulation seamlessly into the RODOS
communication layer, this can be seen in figurad fegure 5.
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Figure 4: Integration of Omnet++ into the RODOS eedmmunication layer.
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Figure 5: Integration of Omnet++ into the YETE syst

Furthermore the simulation itself should introdagi@imal simulation overhead into the system. For
this purpose we designed the simulation to be rua powerful external dedicated PC, to limit the
influence of simulation calculations on the simethsystem process. We also extended the Omnet++
Real Time Event Scheduler to handle real time evemiing from a RODOS-to-Omnet++ Gateway,
which will be further explained later on.

The second requirement for the simulation is thshould speed up the desigr» evaluation

cycle throughout the project duration. Omnet++'gitgfto reuse simulation components, to
structure them in a hierarchical way and to eadgiine large complex nets of connected entities
(e.g. spacecraft, Mission Control Centers (MCChowers) via its meta description language NED
is essential in this regard [13]. By using Omnetveralso have several extensive component
libraries (e.g. INet) at our disposal, which contaiany commonly used network components (e.g.
WLAN links, Ad-Hoc routing components, OSI Layerplamentations, etc.).

The last requirement we regarded as importaneisMfility to perform online and offline data
visualization and collection. The simulation concgygpports both, visualization of the current
satellite and MCC state (e.g. position, connegtj\atc.) live in a map, as depicted in figure 6, as
well as using Omnet++’'s event logging facility twllect and store simulation statistics for lateg.us
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Figure 6: Visualization of the spacecraft systerwoek inside Omnet++. Satellite to MCC link covegeaof
the satellites is marked by a red circle.

3.2. RODOS to Omnet++ Gateway

Integration of external real-time applications irfamnet++ has already been done before [6],
however none of the proposed concepts apply irctss. The reason is, that the external application
RODOS in this case, will be running on severalritigsted nodes, some of which are embedded
devices. Therefore the link between the RODOS Qipgr&ystem and the Omnet++ communication
simulation consists of two parts, one is platforepehdent and is running on the RODOS side and
one is platform independent and is running on then€t++ side. The communication between the
two parts is done via the TCP/IP protocol, prefgraver an Ethernet cable connection. The part on
the RODOS side is implemented as a RODOS hardwdeenterface (omnetpp-linkinterface) over
which RODOS topics can traverse. This link-integfaan later be exchanged by link-interfaces of
real hardware, like one of a Bluetooth Low EnerLKE) connection. This way the simulation
appears transparent to the RODOS system and tthbe software Building Blocks (BBs) running
on the node. On the Omnet++ side a RODOS gatewalulmaeceives the topic data from one or
more RODOS nodes via a two way tcp connection ansldrds the topics to exactly one simulated
hardware link inside the simulation environmenthd RODOS gateway module represents an intra-
satellite link it also broadcasts a special saéeBiate topic to selected modules inside thelgatel
module which need the current satellite state,tkegsatellite position or attitude, for their ogtgon.
One example for such a module is the satellite htplbnodule, which updates the satellite position
inside the visualization map and which is also usetthe signal strength calculations of the radio
transmission links (e.g. inter satellite and sd&elto MCC links). The connection concept is
exemplary shown in figure 7, in which three nodka simple satellite, a Simulink RODOS node, a
sensor and an actuator node communicate over daseduntra satellite radio link.
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To facilitate realtime event processing and to fendw received RODOS data inside Omnet++ we
extended the realtime socket scheduler of Omnesetthat between two scheduled events, it
performs a blocking select operation on the socketdl RODOS gateways in the network and lets
them handle newly received topic data if a sockeheoccurred.
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Figure 7: Omnet++ Satellite module (on the left)da® RODOS nodes belonging to the same satellitehwhi
are connected to the RODOS gateway module of th#itsintra-sat link.

The Omnet++ satellite module shown in figure 7 aorg three RODOS gateways and the three
corresponding radio links, an intra-satellite ligk inter-satellite link and a satellite to MCCklin
The intra satellite link has a simulated Bluetobttw Energy transmission channel connecting the
module to itself. This simulates the intra satelitbmmunication, i.e. the communication among the
RODOS nodes which belong to a single satelliteeriaaitellite and Satellite to MCC radio links rely
on a free space transmission model and the distagteeeen sender and receiver to determine the
received signal strength and transmission delay.
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Figure 8: Mission Control Center Module in Omne®@uir extensions to the standard INet host
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module of Omnet++ are marked in orange.

The MCC Omnet++ module is depicted in figure 8hds a static map position and contains two
RODOS gateways, one is connected to a MCC-to/fratelge link, and another one is connected to
an Omnet++ TCP application module which sends/iveseRODOS topics over/from a simulated
Internet connection to/from other simulated MCChisTshould pave the way for MCC network
simulations and the testing of different routingotpcols in a later stage of the project.
Another interactive Omnet++ module represents agtéay rover, which has a dynamic position and
contains a single RODOS gateway connected to al&¥seLAN module, which is in turn is
connected to the simulated Internet. This allovesrtver to receive and transmit topic data from/to
the MCCs. For example a control command topicHerrover could be relayed by one of the satellites
to a MCC which then sends the control topic disetdlthe rover.

4. SSIMULINK CONTROL

4.1. Simulink integration

For facilitating the development of control algbnits and high-level tasks, we developed a Simulink
toolbox targeting RODOS applications. The toolb@ngists of a support package (SP) which
basically contains the glue code and interfaceR@DOS, and the block library, which provides
specific interface blocks for connecting Simulinkaels with sensors or RODOS internals.

We have chosen Simulink, since this allows us tose existing models and develop new models
very quickly. Also, by using Simulink we can exteti@ models with other toolboxes provided by
Matlab and interface the controller to real hardwyavhen required.

Depending on the application, the controller reggiimeasurements at a specific rate. The sensor
responsible for these controller inputs must prexite samples at the required rate and send them to
the controller via the RODOS middleware.

Using our support package, code can be directlemgead from Simulink. This code can then be

compiled into a standalone binary containing a detepnstance of RODOS and the model designed
with Simulink. Later on, this binary can be copietb the flash memory of a microprocessor and can
then be run on dedicated hardware.

The interface between the sensors, actuators andntdel (i.e., the controller) is made by the
RODOS middleware and its publisher/ subscriberitgcture (figure 9).

blisher/ Subscriber

Simulink interface blocks

: blisher/ Subscriber
RODOS middleware APL

H

Hardware
Sensors/ Actuators

Figure 9: The interface between the Simulink maahel the hardware is provided by a set of flexible
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RODOS middleware interface blocks.

4.2. SSimulation results

To investigate the integrability of the simulati@moncept and to prove the compatibility of
Matlab/Simulink with RODOS and Omnet++, a Simulimodel is generated which contains a
simplified control loop. The model consists of aidied integrator as the plant, representing a point
mass moving on a surface with two degrees of freegtich are both actuated using external forces
as input. The coordinates of the position are takdyuild the output.

mi=u, y=x 1)
with
X1 e .
X: [Xz] the position coordinates

Y :
u: [uz] the forces as input

y: The output
m: Mass

To control the position of the point mass, a linB&r-controller is applied. With the control input
from (2), the closed loop can be described by tipgalion (3) which has a stable equilibrium at the
origin. The stability of the closed loop can bev@o using e.g. the Routh-Hurwiz criterion [5].

u. =-Dx—Px;P,D>0 (2)

mx + Dx + Px = 0 3)
The corresponding C++ code is used to generateetipgired binary file to run within RODOS.

Finally, the results are compared to show the proparking of the generated simulation on a
hardware with RODOS running.

Assuming the scenario, where the point mass haamitial velocity ofx, = [0.1,0.3]T should
move from the origink, = [0,0]T to the pointx* = [—3,0]T, the simulation results are shown in
figure 10.
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Figure 10: Simulation results from running a stahahe Simulink simulation and the output from
the same Simulink simulation inside a hardware R@DOde sampled Witfmpiing= 1 HZ

The fact that both simulation results align petfedemonstrates that, by using the proposed concept
Simulink control from within a hardware RODOS nade be done successfully.

5. CONCLUSION

With YETE a highly distributed spacecraft on-bodeda handling concept was introduced as well as
a five step transition to reach this from the cotrgtate of the art data handling was presented. As
suitable operating system for the YETE objective@DO®S was identified. To pioneer the
development of the five models of YETE in the fetuSimulink control and Omnet++ network
simulation was integrated into the RODOS environmiéor the Omnet++ integration we focused on
a fast testing capability of new/individual systemamponents, easy substitution of simulated
hardware by real one and the ability to simulatedaitellite - rover - MCC networks. Simulink cortro
from within a RODOS hardware node proved to beifdasnd delivered accurate results.

In the future we plan on doing extensive systertstegth the Omnet++ communication simulation
and to further extend it. This includes employirgystem tailored variant of Delay-Tolerant-Network
(DTN) protocols for inter-sat and satellite to ME€@mmunication and testing different short range
wireless solutions (BLE, ZigBee, Wlan, etc.) foe thtra-sat link. The satellite to MCC link canals
be extended to account for atmospheric perturbsitjery. current weather above the MCC) and to
incorporate more detailed receiver/sender and aatproperties into the signal strength calculations
For these calculations we plan to use the well @no@NI-OS3 framework [9].

On the control side the control algorithm needsdoount for delays during control/sensor data
transmissions. One way to do this is to includeciiveent expected system delay into the stateeof th
control process and to base control calculatiorthisrextended system state. A delay tolerant obntr
is also a necessity for another important stepséparation of the controller and the control pssce
model into individual nodes, which are solely corted by the intra satellite link.
We are also currently designing a satellite hardwslmonstration platform, on which we plan to
implement our concepts and run hardware in the tests.
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One of our major goals is to demonstrate the benefithe YETE approach in a future network of
satellites in orbit, which are controlled in a distited way.
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