
Full Virtualization on Low-End Hardware: a Case
Study

Adriano Carvalho∗, Vitor Silva∗, Francisco Afonso†, Paulo Cardoso∗, Jorge Cabral∗,
Mongkol Ekpanyapong‡, Sergio Montenegro§ and Adriano Tavares∗

∗Embedded Systems Research Group
Universidade do Minho, 4800–058 Guimarães — Portugal

†Instituto Politécnico de Coimbra (ESTGOH), 3400–124 Oliveira do Hospital — Portugal
‡Asian Institute of Technology, Pathumthani 12120 — Thailand

§Universität Würzburg, 97074 Würzburg — Germany

Abstract—Most hypervisors today rely either on (1) full virtua-
lization on high-end hardware (i.e., hardware with virtualization
extensions), (2) paravirtualization, or (3) both. These, however,
do not fulfill embedded systems’ requirements, or require legacy
software to be modified. Full virtualization on low-end hardware
(i.e., hardware without virtualization extensions), on the other
end, has none of those disadvantages. However, it is often
claimed that it is not feasible due to an unacceptably high
virtualization overhead. We were, nevertheless, unable to find
real-world quantitative results supporting those claims.

In this paper, performance and footprint measurements from a
case study on low-end hardware full virtualization for embedded
applications are presented. More specifically, this paper presents:
(1) an evaluation of the virtualization overhead in a Linux-
based system as a guest on POK/rodosvisor, a real time oper-
ating system for embedded systems featuring low-end hardware
full virtualization; (2) a detailed look at the performance of
POK/rodosvisor’s internal operation, namely, interrupt handlers
and context switching; and (3) POK/rodosvisor’s footprint for
various configurations.

To the best of our knowledge, this is the first paper ever to
present performance measurements about a Linux-based system
as a guest on a hypervisor based on low-end hardware full
virtualization, and therefore, targeting a common real-world
scenario.

I. INTRODUCTION

Full virtualization on high-end hardware and paravirtual-
ization are, by far, the most common types of virtualization
found in the state of the art. With full virtualization in general,
the hypervisor provides virtual machines with an interface
identical to that of the underlying hardware platform (i.e.,
the real/physical machine); such a virtual machine is, thus,
capable of hosting unmodified legacy software. In particular,
full virtualization on high-end hardware (i.e., hardware with
dedicated support for virtualization), however, is not suitable
for embedded systems, since it currently leads to large system
size, high weight, high power consumption, high cost, etc.
On the other end, with paravirtualization, the virtual machines
established by the hypervisor do not provide an interface
identical to the underlying hardware platform and, instead,
provide a different, more efficient interface. Paravirtualization
is not dependent on particular hardware; nevertheless, the
guests of (para)virtual machines need to be modified to fit

a hypervisor-specific, often proprietary, interface. Full virtua-
lization on low-end hardware, on the other end, has none of
those disadvantages.

Full virtualization on low-end hardware (i.e., hardware with-
out dedicated support for virtualization) must be accomplished
using mechanisms which were not originally designed for it.
Therefore, full virtualization on low-end hardware is not al-
ways possible because the hardware may not fulfill the neces-
sary requirements (i.e., “the set of sensitive instructions for that
computer is a subset of the set of privileged instructions” [1]).
Furthermore, it is often claimed that it is not feasible due
to an unacceptably high virtualization overhead (e.g., [2]);
however, we were unable to find real-world quantitative results
to support those claims.

In this paper, performance and footprint measurements
from a case study on low-end hardware full virtualization
for embedded applications are presented. More specifically,
a case study to evaluate to what extent low-end hardware
full virtualization is an alternative to high-end hardware full
virtualization and paravirtualization, and provides compati-
bility with unmodified legacy software with acceptable per-
formance and footprint. In this paper, first, an evaluation
of the virtualization overhead in a Linux-based system is
presented, by comparing several benchmarks performed on a
bare metal Linux-based system and on a Linux-based system
as a guest on POK/rodosvisor. POK/rodosvisor is a real time
operating system for embedded systems featuring low-end
hardware full virtualization of most of the feature set of the
IBM PowerPC 405 [3], also known as partial virtualization.
This is similar to what is presented in [4]; there, however,
a hypervisor based on paravirtualization is used. Second, a
detailed look at the performance of POK/rodosvisor’s internal
operation is presented (i.e., POK/rodosvisor’s performance
profile), namely: interrupt handlers and context switching.
Third and last, POK/rodosvisor’s footprint for various con-
figurations is presented.

This paper is organized as follows. In the following
section, section II, background is given on virtualization,
POK/rodosvisor, and on the IBM PowerPC 405. In section III,
the evaluation platform is described. In section IV, perfor-



Fig. 1. The architecture of POK/rodosvisor.

mance and footprint measurements are presented, namely:
the virtualization overhead in a Linux-based system, the per-
formance profile of POK/rodosvisor, and POK/rodosvisor’s
footprint for various configurations. Finally, in section V, a
summary of this paper is given and future work is proposed.

II. BACKGROUND

A. Virtualization

Through time and space partitioning a hypervisor enforces
workload isolation and enables workload consolidation. Work-
load isolation guarantees that the behavior of a virtual ma-
chine, such as a failure, will not affect the rest of the system
(i.e., other virtual machines and the hypervisor). Furthermore,
with workload isolation, the guests can be developed inde-
pendently of each other, leading to lower development and
certification effort. On top of workload isolation, workload
consolidation enables a single computing unit to perform the
same functions as multiple, physically independent computing
units, leading to systems with a smaller size, lower weight,
lower power consumption, lower cost, etc. [5].

Most hypervisors today feature high-end hardware full vir-
tualization (e.g., [6], [7]), paravirtualization (e.g., [8], [9], [10],
[2]), or both (e.g., [11], [12]). To the best of our knowledge,
only Proteus [13], and POK/rodosvisor, presented in this paper,
feature low-end hardware full virtualization. The authors of
Proteus, however, failed to demonstrate compatibility with
legacy software through a real-world scenario, such as a
Linux-based system as a guest on top of their hypervisor; they
only present simple synthetic benchmarks which are not good
representatives of real applications.

B. POK/rodosvisor

POK/rodosvisor is a real time operating system for embed-
ded systems featuring ARINC 653 partitions [14], and low-end
hardware full virtualization of most of the feature set of the
IBM PowerPC 405 [3], also known as partial virtualization.
Even though the entire feature set is not virtualized, one
can workaround the missing features using only the features
that are already virtualized (instead of requiring the use a
completely new set of features or interface, as it is the case
with paravirtualization); provided, nevertheless, that access to
the source code is possible. POK/rodosvisor is the result of
the integration of POK [15], a real time operating system
featuring ARINC 653 partitions, and Rodosvisor [16], [17],
[18], a previously bare metal hypervisor, featuring low-end
hardware full virtualization for the PowerPC 405.

Fig. 2. Scheduling, loading and saving the context of a virtual machine in
POK/rodosvisor.

The architecture of POK/rodosvisor is shown in Fig. 1. All
partitions (ARINC 653 partitions and virtual machines) are
scheduled according to a static scheduling policy, as defined
by ARINC 653 [14]. Whenever there is an interrupt, it is first
handled by the low-level interrupt handlers (i.e., “LLIH” in
Fig. 1). When a virtual machine is running, interrupts are
directed to Rodosvisor, which is itself composed by a set of
interrupt handlers which take care of the virtualization of the
PowerPC 405 as described in [16], [17], [18]. If, on the other
end, an ARINC 653 partition is running, interrupts are instead
directed to POK.

As illustrated in Fig. 2, when a virtual machine’s partition
window begins (i.e., “PW begin” in Fig. 2), POK loads
the context of the virtual machine by calling Rodosvisor,
while specifying the duration of the partition window (i.e.,
“load(pw duration)”). After loading a virtual machine’s con-
text, Rodosvisor takes control over the hardware, and all inter-
rupts are directed to Rodosvisor. When the virtual machine’s
partition window is over (i.e., “PW end” in Fig. 2), Rodosvisor
saves/unloads the virtual machine’s context, returns the hard-
ware to the state expected by POK, and calls POK’s scheduler,
returning control back to POK.

C. IBM PowerPC 405

The IBM PowerPC 405 [3] is a 32-bits Reduced Instruction
Set Computer (RISC) processor with a five-stage pipeline.
It is a low power processor (0.9 mW/MHz) designed for
high performance embedded systems. It features: hardware
multiply/divide unit; 16 KB two-way set-associative instruc-
tion cache and 16 KB two-way set-associative data cache;
a memory management unit with a software-managed 64-
entry translation look-aside buffer; several timer units; debug
facilities; etc.



Fig. 3. The architecture of the hardware platform.

The PowerPC 405 has been chosen because (1) it is a sim-
ple, low power, low cost processor core, especially dedicated to
embedded systems, and thus, a good representative of low-end
hardware, and because (2) Xilinx provides good development
support, enabling the construction and evaluation of various
hardware configurations, such as single-core and dual-core
processor configurations.

III. EVALUATION PLATFORM

The results shown in the following sections have been
collected on a hardware platform with the architecture depicted
in Fig. 3. It consists of: (1) a PowerPC 405 running at 300
MHz; (2) a memory controller (i.e., Xilinx Multi-Port Memory
Controller, version 4.03a) connected to 256 MB of DDR
SDRAM; (3) a serial port (i.e., Xilinx XPS UART Lite, version
1.00a) with one start bit, one stop bit, and a baudrate of
115200; (4) an ethernet media access controller (MAC) (i.e.,
Xilinx XPS Ethernet Lite Media Access Controller, version
2.00b), which supports the IEEE 802.3 media independent
interface to industry standard physical layer devices, and
provides 10/100 Mbps interfaces; (5) an interrupt controller
(i.e., Xilinx XPS Interrupt Controller, version 1.00a) connected
to the serial port’s and the ethernet MAC’s interrupt request
signals; and lastly, (6) three processor local buses (PLB),
version 4.6 (two of them connect the PowerPC 405 exclusively
to the memory controller for improved performance, one for
fetching instructions and another for data load/store operations,
while the third connects the PowerPC 405 to memory-mapped
I/O devices, namely, the ethernet MAC, the serial port, and the
interrupt controller).

The hardware platform just described has been realized on a
Xilinx University Program Virtex-II Pro Development System
(XUPV2P) [19], which is equipped with a Virtex-II Pro
(XC2VP30) field-programmable gate array (FPGA) [20], and
a comprehensive collection of input and output devices, which
can be used to create many different hardware configurations.
Xilinx Embedded Development Kit, version 10.1, has been
used to create, configure and generate the evaluation hardware
platform, on a Fedora 19 host. All of the software has been
compiled on a Fedora 19 host using a GCC cross-compiler for
the PowerPC 405, version 4.8.1, with optimizations enabled
(i.e., “-O2” compiler option).

Fig. 4. Configurations used to evaluate the virtualization overhead in a Linux-
based system: (L1) Linux-based system on bare metal; (L2) Linux-based
system as a guest on POK/rodosvisor.

IV. EVALUATION

A. Virtualization Overhead

In this section, the virtualization overhead in a Linux-based
system, as a guest on top of POK/rodosvisor, is presented,
for three different types of workloads, namely: compute-,
I/O- and CPU-management-intensive workloads. For that two
configurations have been developed and tested:
L1. A system based on Linux 2.6.39, with a small RAM-

based file system (i.e., initramfs), running on bare metal,
as illustrated in Fig. 4(L1).

L2. A system based on POK/rodosvisor, with one virtual
machine whose guest is the same Linux-based system
described in L1, as illustrated in Fig. 4(L2). The virtual
machine is configured: (1) to have direct access to the
serial port and to the ethernet MAC; and (2) with a virtual
interrupt controller which emulates a physical interrupt
controller. Direct access to a physical interrupt controller
is not given because it can be configured to bypass the
hypervisor (i.e., POK/rodosvisor) and violate time and
space partitioning.

Currently, independent control over instruction and data
address translation, a feature of the PowerPC 405, is not sup-
ported by POK/rodosvisor. Linux, however, uses this feature
when flushing the cache during initialization. Therefore, the
Linux kernel’s source code has been modified to workaround
this limitation, requiring 34 new/modified source lines of code.
Still, only a subset of the features provided by the PowerPC
405 have been used to workaround this limitation, instead of
requiring the use a completely new set of features or interface,
as it is the case with paravirtualization. Other than that, no
modifications were necessary.

On top of the two configurations described above, several
benchmarks have been executed. Table I presents the results of
those benchmarks, the associated virtualization overhead, and
their respective type. In Table I, the following benchmarks can
be found:

1) Boot, Decompression: The boot process of the Linux-
based system has been divided into 3 stages, and this result
corresponds to the first stage. It corresponds to the time
required to decompress the Linux kernel image (including the
initramfs). In this stage, the use of CPU management oper-
ations (e.g., privileged instructions, interrupts) is negligible,
and thus, this benchmark has been classified as compute-
intensive (i.e., “Compute” in Table I). Results show that the



TABLE I
THE RESULTS OF SEVERAL BENCHMARKS, PERFORMED ON TOP OF A

LINUX-BASED SYSTEM, RUNNING ON BARE METAL (I.E., L1), OR AS A
GUEST ON POK/RODOSVISOR (I.E., L2). FOR EACH BENCHMARK, THE
ASSOCIATED VIRTUALIZATION OVERHEAD, IN PERCENTAGE, AND ITS

TYPE ARE ALSO SHOWN.

L1 L2 Overhead Type
Boot (seconds)
Decompression 36 36 0.00 Compute
Linux 2.9 4.2 44.83 CPU mgmt.
Shell 1 4 300.00 CPU mgmt.
Total 39.9 43.2 8.27
Dhrystone (Dhrystones per Second)

577800.9 566989.9 1.91 Compute
Whetstone (C Converted Double Precision Whetstones (MIPS))

3.8 3.7 2.70 Compute
Netperf (Mbit/s)
TCP STREAM 17.4 13.9 25.18 I/O

virtualization overhead is non-existent. This is expected since
there is very little use of CPU management operations, and
therefore, the hypervisor is rarely activated.

2) Boot, Linux: This is the second stage of the boot
process of the Linux-based system, and it corresponds to the
initialization of the Linux kernel. In this stage the use of
CPU management operations is high, therefore, this bench-
mark has been classified as CPU-management-intensive (i.e.,
“CPU mgmt.” in Table I). Results show that the virtualization
overhead is high (i.e., 44.83%), which is expected, since the
use of CPU management operations is high and, therefore, the
hypervisor is activated often. This overhead, however, includes
not only the hypervisor’s overhead, but also the overhead
caused by cache trashing during the interaction between the
hypervisor and the Linux kernel.

3) Boot, Shell: This is the third and last stage of the
boot process, which corresponds to the initialization of a
Buildroot-based shell [21]. Similarly to the previous stage, the
use of CPU management operations is significant, thus, this
benchmark has been classified as CPU-management-intensive.
Compared to the previous stage, however, the use of CPU
management operations is even higher as this stage begins with
the execution of the “init” process, on top of Linux, and with
the activation of process scheduling, context switching, system
calls, etc. Therefore, as the results show, the virtualization
overhead is also higher than in the previous stage.

4) Dhrystone and Whetstone: Dhrystone [22] is a bench-
mark which measures the performance of integer and string
operations, and Whetstone [23] is a benchmark which mea-
sures, mainly, the performance of floating-point arithmetic.
These two benchmarks have been classified as compute-
intensive. Results show that the virtualization overhead is low,
but noticeable. It was expected that, similarly to the first
stage of the boot process, the virtualization overhead would
be negligible, as the operations being benchmarked do not
rely on CPU management operations, and thus, do not lead to
the activation of the hypervisor. What these results show is the
virtualization overhead during the execution of the benchmark,
caused by Linux’s normal operation (e.g., scheduling) as well

as the overhead caused by cache trashing during the interac-
tion among the hypervisor, the Linux kernel, the benchmark
process, and other processes running concurrently on top of
the Linux kernel.

5) Netperf: Lastly, Netperf [24] is a benchmark which
measures the throughput and latency for various kinds of
network connections (e.g., TCP, UDP). To perform this bench-
mark, netserver executed on the target while netperf executed
on a Fedora 19 host. This benchmark has been classified
as I/O-intensive (i.e., “I/O” in Table I). The results for the
TCP STREAM test profile, which measures throughput over a
TCP connection, are shown. It can be seen that L1’s maximum
throughput is 25% higher than that of L2’s. In this benchmark,
the virtualization overhead includes not only the overhead
caused by CPU management operations (in the Linux kernel,
in the device drivers, in the protocol stack, etc.), but also the
virtualization overhead of the virtual interrupt controller which
is connected to the ethernet MAC. Considering the complexity
of this benchmark, which includes two device drivers (i.e., one
for the ethernet MAC and another for the interrupt controller)
and a protocol stack, we expect the virtualization overhead to
be much lower for most I/O-intensive workloads, which are
not as complex.

To sum up, these results show that: (1) for compute-
intensive workloads, the virtualization overhead is low and,
in some cases, negligible; (2) for I/O-intensive workloads, the
virtualization overhead is significant, but for most workloads,
we expect it to be low; (3) for CPU-management-intensive
workloads, however, the virtualization overhead can be quite
significant. These results indicate that low-end hardware full
virtualization is more adequate for compute-intensive work-
loads, with moderate use of I/O, and with low use of CPU
management operations. Some of the reasons for this behavior
will become more clear in the next section, which presents
POK/rodosvisor’s performance profile.

By showing the results of some benchmarks executed on
top of a Linux-based system as a guest on POK/rodosvisor,
it demonstrates, indirectly, compatibility with legacy software
(i.e., a complete Linux-based system). To the best of our
knowledge, this is the first paper ever to present performance
measurements about a Linux-based system as a guest on top
of a hypervisor based on low-end hardware full virtualization,
and therefore, demonstrating compatibility with a common
real-world scenario.

B. POK/rodosvisor’s Performance Profile
To obtain POK/rodosvisor’s performance profile, config-

uration L2, described in the previous section, was reused.
POK/rodosvisor’s built-in, custom profiler was enabled and
profiling data were collected during 90 seconds since boot (it
includes almost 45 seconds required to boot the Linux-based
system, and another 45 seconds of idle time).

The profiling data were composed of several probes, each
associated with a specific code path. For each probe the
following data were collected: the number of samples (or ac-
tivations), the minimum, the maximum and the total execution



TABLE II
THE NUMBER OF SAMPLES, THE AVERAGE AND THE TOTAL EXECUTION

TIMES PER PROBE. EXECUTION TIMES ARE GIVEN IN CPU CLOCK
CYCLES. IN PARENTHESIS, THE RATIO TO THE SUMMATION OF ALL THE

VALUES IN THE SAME COLUMN IS GIVEN, IN PERCENTAGE.

Probe No. samples Average Total

Program 1841211
(96.857%) 511 868824642

(91.639%)

Data TLB-Miss 29310
(1.542%) 1356 39366270

(4.152%)

Instruction TLB-Miss 22824
(1.201%) 1594 36074969

(3.805%)

System Call 4800
(0.253%) 419 1945588

(0.205%)

Data Storage 1875
(0.099%) 364 657625

(0.069%)

PIT 475
(0.025%) 1312 616728

(0.065%)

Context Switch In 90
(0.005%) 3247 292259

(0.031%)

Context Switch Out 89
(0.005%) 1815 161549

(0.017%)

Instruction Storage 253
(0.013%) 522 128658

(0.014%)

External 28
(0.001%) 988 27300

(0.003%)

time; the average execution time was obtained by dividing the
total execution time by the number of samples.

In Table II, the number of samples, the total and the average
execution times per probe are shown (only probes with a
number of samples greater than zero are presented). This table
includes all the interrupt handlers that have been activated
(e.g., program, instruction and data TLB-miss), as well as the
time to switch contexts in and out of the virtual machine.

It can be seen that the program interrupt handler, which
is responsible for the emulation of privileged instructions,
makes up for 91.7% of the total execution time. However, it is
also, by far, the most activated interrupt handler (i.e., 96.9%),
and it actually has a low average execution time. This par-
tially explains why CPU-management-intensive benchmarks
performed so poorly.

After the program interrupt handler, the instruction and data
TLB-miss interrupt handlers make up for 8% of the total
execution time, even though their contribution to the total
number of samples is less than 3%. This happens because
of the high (actually, the highest) average execution time for
these two interrupt handlers.

The remaining interrupt handlers and context switching
make up for less than 0.4%, which compared with the ones
discussed above is negligible.

To sum up, these results indicate that low-end hardware full
virtualization is a serious alternative for workloads which do
not rely heavily on CPU management operations.

C. Footprint

In this section, the footprint of POK/rodosvisor for various
configurations is presented. The footprint of POK/rodosvisor
is also compared with the kernel’s footprint of an equivalent
POK-based, ARINC-653-compliant system. To do that, the

Fig. 5. Configurations used to measure and compare the kernel’s footprint of
(A) an ARINC-653-based system and (V) a virtual-machine-based systems.

Fig. 6. The kernel’s footprint, in terms of the total size, as well as the size
of the code and data, for systems based on (A) ARINC 653 partitions, and
(V) virtual machines.

following two sets of configurations have been developed and
tested:
A. Configurations with one up to 10 ARINC 653 partitions

as illustrated in Fig. 5(A); each partition has two threads:
a mandatory main thread, and one worker thread which
performs no operation.

V. Configurations with one up to 10 virtual machines, as
illustrated in Fig. 5(V); the guest is the same for all virtual
machines and performs no operation.

All of the configurations just described have been compiled,
and from the resulting executable and the system’s behavior
during run time (e.g., dynamic memory allocation), the size
of the code and data has been measured. The size of the data
includes: the size of read-only data, the size of read/write data,
and the combined size of all stacks. The total size of the kernel,
as well as the size of the code and data, for all configuration
is shown in Fig. 6.

It can be seen that for configurations with a small number
of partitions (i.e., ARINC 653 partitions or virtual machines),
ARINC-653-based systems lead to a smaller kernel’s footprint
than virtual-machine-based systems. As the number of par-



titions increase, however, the difference decreases, and, for
a large number of partitions (more than six), the kernel’s
footprint of a virtual-machine-based system is smaller than
that of an ARINC-653-based system. This shows that, when a
large number of partitions is required, a virtual-machine-based
system enables a reduction of the kernel’s footprint. These
results also indicate that low-end hardware full virtualization
does not necessarily lead to a large kernel’s footprint.

V. CONCLUSION

In this paper, performance and footprint measurements
from a case study on low-end hardware full virtualization
for embedded systems have been presented. The case study
evaluates to what extent low-end hardware full virtualization
is an alternative to high-end hardware full virtualization and
paravirtualization, and provides compatibility with legacy soft-
ware with acceptable performance and footprint.

In this paper, compatibility with legacy software has been
demonstrated by showing the results of some benchmarks
executed on top of a Linux-based system as a guest on
POK/rodosvisor. To the best of our knowledge, this is the
first paper ever to present performance measurements about
a Linux-based system as a guest on top of a hypervisor based
on low-end hardware full virtualization, and therefore, demon-
strating compatibility with a common real-world scenario.

The evaluation of the virtualization overhead, and
POK/rodosvisor’s performance profile showed that, low-end
hardware full virtualization is more adequate for compute-
intensive workloads, with moderate use of I/O, and with low
use of CPU management operations.

In terms of footprint, it has been shown that the kernel’s
footprint for a virtual-machine-based system can be lower than
the kernel’s footprint for an ARINC-653-compliant system.
This indicates that the requirements of low-end hardware
full virtualization regarding the kernel’s footprint are not
necessarily high.

Altogether, we believe that these results demonstrate that,
for many applications, low-end hardware full virtualization can
be a serious alternative to high-end hardware full virtualization
and paravirtualization, enabling: (1) a reduction of system size,
weight, power consumption, cost, etc., when compared with
high-end hardware full virtualization; (2) a reduction (in many
cases, elimination) of the effort required to port legacy soft-
ware to a hypervisor-specific interface, when compared with
paravirtualization; as well as (3) in some cases, a reduction of
the kernel’s footprint.

As future work, we propose to explore methods to ad-
dress or workaround the limitations and bottlenecks found
in POK/rodosvisor (e.g., full virtualization of the complete
feature of the PowerPC 405, and POK/rodosvisor’s program
interrupt handler bottleneck). Furthermore, we propose to
perform similar case studies on other processor architectures,
and thus, to evaluate its potential on other processor architec-
tures. Finally, we hope that the lack of published results on
hypervisor’s performance and footprint is a gap which will be
filled in the future.

ACKNOWLEDGMENT

This work has been supported by COMPETE: POCI-01-
0145-FEDER-007043 and FCT (Fundação para a Ciência e
Tecnologia) within the Project Scope: UID/CEC/00319/2013.
The work of A. Carvalho and V. Silva was supported by FCT
(grants SFRH/BD/81640/2011 and SFRH/BD/82732/2011, re-
spectively).

REFERENCES

[1] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–
421, Jul. 1974.

[2] S. Trujillo, A. Crespo, and A. Alonso, “MultiPARTES: Multicore Virtua-
lization for Mixed-Criticality Systems,” in 2013 Euromicro Conference
on Digital System Design (DSD), Sep. 2013, pp. 260–265.

[3] IBM, PowerPC 405-S Embedded Processor Core User’s Manual, 1st ed.,
2010.

[4] S. Campagna and M. Violante, “On the Evaluation of the Performance
Overhead of a Commercial Embedded Hypervisor,” in The First Work-
shop on Manufacturable and Dependable Multicore Architectures at
Nanoscale (MEDIAN’12), 2012, pp. 59–63.

[5] G. Heiser, “The role of virtualization in embedded systems,” in Pro-
ceedings of the 1st workshop on Isolation and integration in embedded
systems, 2008, pp. 11–16.

[6] “Main Page - KVM.” [Online]. Available: http://www.linux-kvm.org/
page/Main Page

[7] “QNX Hypervisor.” [Online]. Available: http://www.qnx.com/products/
hypervisor/index.html

[8] “Codezero Embedded HypervisorTM - B Labs | ARM Connected
Community.” [Online]. Available: http://community.arm.com/docs/
DOC-7123

[9] A. Whitaker, R. Cox et al., “Rethinking the design of virtual machine
monitors,” Computer, vol. 38, no. 5, pp. 57 – 62, May 2005.

[10] Philipp Eppelt, “Running RTEMS in POK Partitions.” [Online]. Avail-
able: https://wwwpub.zih.tu-dresden.de/∼s8940405/rtlws13 rtems in
pok partitions.pdf

[11] Green Hills Software, “INTEGRITY Multivisor,” 2015. [Online]. Avail-
able: http://www.ghs.com/products/rtos/integrity virtualization.html

[12] “The Xen Project, the powerful open source industry standard for
virtualization.” [Online]. Available: http://www.xenproject.org/

[13] K. Gilles, S. Groesbrink et al., “Proteus Hypervisor: Full Virtualization
and Paravirtualization for Multi-core Embedded Systems,” in Embedded
Systems: Design, Analysis and Verification, ser. IFIP Advances in Infor-
mation and Communication Technology, G. Schirner, M. Götz et al.,
Eds. Springer Berlin Heidelberg, Jan. 2013, no. 403, pp. 293–305.

[14] “653p3a AVIONICS APPLICATION SOFTWARE STANDARD
INTERFACE,PART 3a, CONFORMITY TEST SPECIFICATION
FOR ARINC 653 REQUIRED SERVICES.” [Online]. Available:
http://store.aviation-ia.com/cf/store/catalog detail.cfm?item id=2189

[15] “POK homepage: home.” [Online]. Available: http://pok.safety-critical.
net/

[16] A. Tavares, A. Carvalho et al., “A customizable and ARINC 653
quasi-compliant hypervisor,” in 2012 IEEE International Conference on
Industrial Technology (ICIT), 2012, pp. 140–147.

[17] A. Carvalho, F. Afonso et al., “Cache full-virtualization for the PowerPC
405-S,” Bochum, Germany, Jul. 2013.

[18] A. Tavares, A. Didimo et al., “RodosVisor - an Object-Oriented and
Customizable Hypervisor: The CPU Virtualization,” S. Klaus, Ed.,
University of Würzburg, Germany, Apr. 2012, pp. 200–205.

[19] Xilinx, Xilinx University Program Virtex-II Pro Development System:
Hardware Reference Manual, 1st ed. Xilinx, 2009.

[20] ——, Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data
Sheet, 4th ed. Xilinx, 2007.

[21] “Buildroot - Making Embedded Linux Easy.” [Online]. Available:
https://buildroot.org/

[22] “http://www.netlib.org/benchmark/dhry-c.” [Online]. Available: http:
//www.netlib.org/benchmark/dhry-c

[23] “http://www.netlib.org/benchmark/whetstone.c.” [Online]. Available:
http://www.netlib.org/benchmark/whetstone.c

[24] “The Netperf Homepage.” [Online]. Available: http://www.netperf.org/
netperf/


