
1

Collision Free Protocol for Ultrawideband Links in Distributed Satellite Avionics

Tobias Mikschl (1), Richard Rauscher (1), Sergio Montenegro (1), Klaus Schilling (2), Florian
Kempf (2), Tristan Tzschichholz (3)

(1) Dep. of CS VIII: Aerospace Information Technology
University of Würzburg, D-97074 Würzburg, Germany

Email: tobias.mikschl@uni-wuerzburg.de
Telephone: +49 931 31 80031

(2) Dep. of CS VII: Robotics and Telematics
University of Würzburg, D-97074 Würzburg, Germany

(3) Zentrum für Telematik e.V.
D-97218 Gerbrunn, Germany

PAPER

We are working on a distributed and modular approach for wireless connected satellite avionics. In
this paper, we want to present a simple, yet powerful protocol for Ultrawideband links, which was
designed for intra-satellite communication, connecting computer, sensor and actuator nodes. The
suggested protocol provides reliable communication and a fixed data-rate for every connected node,
while still being re-configurable on the fly and reacting dynamically on connecting / disconnecting
network members.

1 INTRODUCTION 

In our project YETE we are working on a innovative solution for distributed data processing and
control in fractionated spacecraft [1]. 

A common approach for on-board data handling (OBDH) in modern spacecraft is to use several
specialized  subsystem computers  in  parallel  for  the  individual  tasks,  i.e.  for  sensor  data  post-
processing  and  to  hardwire  the  communication  network  of  the  individual  subsystems  of  the
spacecraft.  These  subsystems  are  then  controlled  by  one  or  more  redundant  general  purpose
computing units (GPUs). 

One drawback of this centralized approach is that computing resources of the specialized subsystem
computers cannot be shared among other subsystems or other spacecraft in a mission, which results
in  wasted  computing  resources.  Furthermore  should  all  GPUs fail,  all  still  working  spacecraft
subsystems are lost for the mission. 

We are addressing these drawbacks by a distributed data processing concept with strong emphasis
on modularity at hardware and software level. 
On the  hardware  level  all  spacecraft  subsystems (sensors,  actuators,  computing  units,  etc.)  are
treated  as  independent  nodes  in  a  distributed  network.  Most  device  specific  computations  are
performed on general purpose computer nodes, which form a computing cluster.
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On the software level all functional software units, i.e. I/O drivers or applications, are encapsulated
into independent "Building Blocks (BB)". They can easily be added or removed allowing fast re-
configuration  of  the  software  system  to  changing  mission  conditions.  Intra-/inter  vehicle
communication,  task distribution and task execution is handled by the middleware OS RODOS
which runs natively on all nodes in the spacecraft. 

Our system has been thoroughly tested in a  network of  sensors,  actuators  and computer  nodes
connected via  CAN (Controller  Area network).  Now we are taking the next  step to replace  all
connections within our system with low power short range wireless links. Later in the project we
will  add inter-satellite  links,  that  will  allow the  space  vehicle  to  use the  computing  resources,
sensors and actuators of other space vehicles and to share its own. See figure 1 for a sample yete
configuration.

Figure 1. The YETE concept: Wireless links are used to connect a cluster of computing nodes to
very simple sensors/ actuators. All sensor- or actuator-specific processing now takes place in one or

more computing nodes.

2 ULTRAWIDEBAND

After studying several possibilities, we decided to use Ultrawideband (UWB) for short range intra-
satellite communication. 

UWB was standardized  under  IEEE 802.15.5  in  the  year  2011 [2]  and brings  several  benefits
compared to traditional narrow-band radio communication:

• ability to deal with severe multi-path environments
• low spectral density and therefor less disturbance for EM sensible devices
• robust to narrow-band disturbances

It has already been shown, that UWB looks like a promising and viable candidate for short-range
radio communication in satellites [3].
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On the hardware side we use  DW 1000 UWB modules by the Irish company  Decawave. Mainly
developed for local positioning systems, these modules are perfectly suited for data communication
as well. Specifications include [4]:

• IEEE802.15.4-2011 UWB compliant
• maximum Data rate 6.8 Mbps
• Low power consumption

While we use these modules to develop our communication protocol, we implement it as hardware
independent as possible.

3 THE PROTOCOL

Based  on  the  Ultrawideband  physical  layer  provided  by  the  commercial  of  the  shelf  (COTS)
modules, we implemented our own communication protocol. 

Requirements for the protocol stack are:

• no separate time synchronization needed
• self initializing
• reasonable data rates
• dynamic detection of packet loss
• modular / highly re-configurable

The protocol features a slot based system, which avoids collisions in the network and ensures a
fixed data rate for every network member. Initialization of the protocol is CSMA/CA (Carrier Sense
Multiple Access / Collision Avoidance) based, as for the normal operating mode in TDMA (Time
Division Multiple Access) first a synchronization of the connected nodes has to be established.

In figure 2 graphical illustrations are shown for the individual parts and structures. This will help to
understand the explanatory graphics for the different phases of the protocol.

Figure 2. Graphical illustration of the different components of the protocol.
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The network can be in one of three phases. Either the Hello cycle, reordering cycle or in the normal
cycle (see figure 3). After the reordering and normal cycle so called µSlots are added, which allow
registration of new nodes in an already established network.

Figure 3. Different cycles of the protocol.

3.1 Simplified protocol sequence

In the beginning the protocol starts  with the Init  Phase.  If there is  no network,  then the nodes
discover its neighbors and form a new one. The access to the media is similar to CSMA/CA.

The Sync Phase is started after the formation of the new network, in case of a node’s failure or
when a of a new device registers itself via the μSlots. In this stage, the nodes synchronize its local
lists with the known neighbors and assigned slots. This list serves each node as schedule. The used
technique to access the media in the Sync and Data Phase is TDMA in combination with a dynamic
slot and frame size.

The exchange of data is the objective of the Data Phase and induced after the Sync Phase. In the
Data Phase, the header contains acknowledgements to every message. These are necessary to detect
the failure of a node. In this case, the node and its assigned slot is removed from the schedule so
that the throughput is increased, and the delay is decreased. Afterwards, the known nodes must
synchronize its local lists. A registration in the Data Phase is possible analog to the Sync Phase via
μSlots.

The registration of a failed or new node takes place via the μSlots. At the end of the frame, there is
an empty slot which is divided further in smaller slots. These μSlots help to reduce collisions if
more than one node wants to register at the network. The specific μSlot is chosen randomly by the
new node. A registration leads to a followed Sync Phase in which a new slot is added to the frame
and the new schedule is distributed.

3.2 Initialization phase - the Hello cycle

The starting point is the Init Phase and there are four challenges, namely the decrease of collisions,
the election of the first node which starts the next phase, a mechanism if the first node fails and a
stable state as fast as possible. The Init Phase is used to form the network in the case that all nodes
fail  or  a  new  network  is  started.  At  the  beginning,  the  nodes  do  not  know  each  other and
communication  to  discover  the  network  is  necessary. However,  the  nodes  are  not  ordered and
unknown, so collisions can not be excluded. However, with the technique of CSMA/CA the number
can be reduced.
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Only  exploration  packets  shifted  by  random listening  times  are  send.  This  exploration  packets
contain the sending nodes ID and between these the node is listening for exploration packages of
foreign  nodes.  As  the  sending  times  are  distributed  with  randomly  varying  listening  time  in
between, sooner or later two different node will receive each other, if they are in range. 

Figure 4. Protocol header of the Init Phase.

Figure 4 shows the header of the protocol in the Init Phase. The first byte is the frame type, which is
in accordance with the different stages of the protocol. The different types are Init, Sync, Data and
Micro. In the initial stage, the type of a received message determines the further action. The type is
followed  by  the  id  of  the  message  source.  Finally,  a  list  with  the  known  neighbor nodes  is
contained. This list is essential for discovery and synchronization.

3.3 Sync phase - Reordering cycle

The Sync Phase aims at the synchronization of the node lists of all registered devices. This list is
used as schedule for the TDMA and every node can determine its slot from this schedule.  The
header of the Sync Frames are identically with the Init Frame apart from the frame type. The Sync
Phase is started after the Init Phase or when changes in the list occur due to failed or new nodes.

In the Init Phase the first node is determined, called Leadoff, which starts the Sync Phase. In the
case that all nodes but the Leadoff fail, the Init Phase is restarted. However, if the first node fails,
the other ones remain in the Init Phase since no stable state was reached so far. 

If a Sync Message is received, the contained node list overwrites the local list. With the overwriting
a global consistent list state on every active node is reached. The next slot node redistributes the
received list because of two reasons. The first one is, that the reception of the list is guaranteed in
case that several nodes did not received the Sync Frame. A second reason is that new arrived or
failed  nodes  receive  the  list  and  can  determine  the  μSlots.  Because  the  list  contains  the  slot
numbers, the unregistered node waits until the last slot. After them, the empty slot with the several
μSlots is appended. Then the node can register and a further Sync Phase is started.

The timers of the nodes are synchronized at the reception of a message. This means as soon as a
message  is  received,  the  node  determines  the  last  slot  number  and  computes  the  number  of
remaining slots until its own. In Figure 4, Node i sends the message in Slot i. Node i + 1 sends its
message  as  soon  as  the  message  of  Node  i  is  received.  So  the  slots  are  compressed  and the
successor does not wait until the end of the current slot. In the case of an later node as shown in b),
Node i + j shifts the beginning of its frame forward by the remaining slot time. Also, the reception
of a message is the reference point to adapt the nodes timer. This is also valid in case of the μSlots,
whose beginning is also set earlier. With these dynamic size, the slot is as large as necessary and the
throughput is increased. Simultaneously, the logical order is respected. If nodes fail, the slot remains
empty and the following nodes do not change its beginning. 
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Figure 4. Visualization of the slot shift to increase throughput.

However, the distributed application of the protocol hinders the backup of the first node. Because if
a node changes its list, it is possible that the modification is only local e.g. this node can be the only
one, which did not receive the message. Therefore, the device is in an unstable state and has to wait
for the synchronization. In the next frame, a Sync Phase is expected to ensure that all nodes share
the same node list. Otherwise, if the next frame is not a Sync Phase the node deletes its list and has
to  reregister  via  μSlot,  because  only  its  list  has  changed.  This  leads  to  a Sync  Phase,  which
synchronizes the node lists. Because of the design, the nodes have to wait until the first node starts
the Sync Phase. Alternatively, the node with the changed list can start the Sync Phase. However, the
Sync Phase starts in the midst of a frame and if the μSlot is used additionally, a further Sync period
has to start. In the case of a dedicated sync frame, the μSlot registration and the node list change can
be handled at once.

After the Sync Phase the next stage starts, provided that no node uses the μSlot. In the next
phase, Data Frames are sent.

3.4 Data phase - Nominal (synchronized) operation

In the Data Phase, the goal is the exchange of packets with data and as keep-alive packets via
broadcast  to  recognize  nodes,  which  failed.  A challenge  in  this  phase  is  the  recognition  of  a
downtime of a node. Because there is no central device, each node has to detect a failure of a node
by itself. However, a node which failed has to be distinguished from a message, which only a single
node did not receive. Furthermore, the failure of the Leadoff must not lead to a breakdown of the
network. The last challenge is finding the right time for updating the local neighbor list.

Figure 5. Protocol header of the Data Phase.
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The header of the Data Frame contains like the other ones, the frame type and the source id as in
Figure 5 shown. Afterwards a State Byte is appended, which is used to mark the last assigned slot.
Therefore, the first bit is used and the remaining ones are for future use reserved. The end of the
header includes four bytes for the confirmation of Data Frame receptions. The receipt of messages
in the last n − 1 slots is documented in the ActiveNodesBits.

A node x can recognize if it is in the Data Phase, when it is contained in its local node list. So that
the node is known to the other ones it has to be present in their local lists. The devices clear its node
list after sending an Init Frame, so the device has to be added to a neighbor list. If the neighbor
sends its own Init or Sync Message later, then the address of the node x is contained in the list of the
received message. Therefore, a node does not add itself to its local list but through received node
lists in the Init or Sync Phase. This ensures, that a node is known to the other nodes.

3.5 Micro Mode

The purpose of the Micro Mode is the registration of a new or failed node via the μSlots at the end
of the assigned slots. In the following the registration of new nodes via the μSlots is explained,
whereby the described process is also valid for failed nodes. The term “Micro Mode” was used
instead of “Micro Phase”, because the latter is misleading. In contrast to the other phases only a
single slot is used instead of a whole frame, and only the new node is in this mode. Other known
nodes do not switch to the Micro Mode. Therefore, the term “Micro Mode” is more suitablefor the
registration process of a node via μSlots. A challenge here is the detection of the μSlot because the
TDMA-schedule is unknown.

Figure 6. Protocol header of the Micro Mode.

The Micro Messages have to be small because of the limited μSlot size. For that reason, the header
of the Micro Frames are the shortest in the protocol. The first five bytes are the frame type and the
source id, in analogy to the other phases. In the end, the number of the occupied μSlot is appended
as shown in Figure 6.

If a node receives an Init Message then the registration is made as described in the Init Phase. A
registration via the μSlots is only made in case of a reception of Sync- or Data-Frames. This means,
that the network is already formed and the current node has to be added instead of a new formation. 

If the network is in the Sync Phase, then the new node receives Sync Frames with the current
schedule, the node list. The node has to check the list and determine the slot. If the current slot is
the last occupied one, then the next slot contains the μSlots.

Whereas, in the Data Phase no node lists are sent within the frames and therefore the schedule is
unknown to the new nodes. For this reason, in the Data Header the first bit of the State Byte is
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designed. This Micro Bit marks the last slot before the μSlots. After the node has determined the
empty  slot,  a  μSlot  is  chosen  randomly. The  node computes  the  duration  to  its  chosen  μSlot,
whereas the reception of the last message is the reference point again. This means, the message
which set the Micro Bit or in case of the Sync Phase, the last slot. The sent Micro Frame contains
the randomly chosen μSlot. This is necessary, so that the other nodes can determine the remaining
time to the end of the frame. Again relative to the reception of the Micro Message. The remaining
time has to be determined since several nodes can register itself via the μSlots within the current
frame.

Figure 7. A new node is connecting.

4 EVALUATION

The protocol  has been tested in simulation and on real hardware.  For the hardware testbed the
aforementioned ultrawideband modules DW1000 by Decawave Inc. have been used, combined with
STM32F4 series micro-controllers  by STMicroelectronics  [5] and the satellite  operating system
RODOS [6]. For testing special situations, which are hard to replicate in a hardware testbed the
Omnet++ based simulation framework Castallia [7] has been utilized. 

4.1 Simulation

The  Simulation  enables  testing  of  the  functionality  and  behavior  of  the  protocol  in  special
conditions. It has to be mentioned that Castalia does not support Ultrawideband connections (yet).
Therefore  general  robustness  and   properties  of  the  protocol  can  be  evaluated,  however  real
performance numbers can not be derived, as the real timing characteristics of the ultrawideband
modules are not implemented in Castalia.

Scenarios  like  a  varying  packet  loss  in  the  wireless  connection  are  hard  to  evaluate  in  a  pure
hardware testbed. Evaluated in the Catalia simulation of the protocol the packet loss characteristics
are presented in figure 8. As anticipated with growing packet loss the throughput decreases, but
even at 30% packet loss the network is still in a working (but limited bandwidth) condition. 
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Firgure 8. Measured throughput in the simulation with packet loss.

Figure 9 shows how long it takes the network to react on failing nodes and establish a working
synchronized state again.  In this sample a network consisting of 3 and of 8 nodes has been tested.
In the first scenario (left side) two nodes failed and in the second scenario all nodes in the network
failed. As one can see the results for the first scenario matches the second in a 3 node network, as
two failed nodes are equivalent to a complete network failure in the 3 node setup. In the 8 node
setup the time needed to return to a stable network is considerably lower, as there is no need to to
start with a initialization phase again, because the rest of the network stays in a synchronized state.

Figure 9. Measured throughput in the simulation with simultaneously failed nodes.
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4.2 Hardware Testbed

In the hardware testbed we used 8 nodes each consisting of a DW1000 ultrawideband modules
connected to a STM32 Discovery Boards, which feature a STM32F407 Microprocessor [5]. All
measurements in the hardware testbed have been made for at least 24 hours, to catch sporadic errors
and ensure longtime stability. 

(a) Throughput in packets per minute. (b) Time between packets of the neighbor node.

Figure 10. Testbed with eight nodes and 100 byte payload.

Figure 10 show the result of one of the hardware tests. The 8 nodes created a network over the
ultrawideband connection and continuously exchanged a payload of 100 bytes in each data frame.
Between two packets send by the same node and received by another node in the network a time of
m = 30.2 msec is measured with a standard deviation of 1.01 msec. 

The measured data throughput is at 26.46 Kbit/sec. With chosen slot size of 10 msec per slot the
theoretical limit would be 11.11 frames per second. However with the dynamically allocated slot
time (see paragraph 3.3  “slot shift”) of the protocol, the measured throughput comes up to three
times more.

5 CONCLUSION

In this paper a innovative approach for a wireless sensor network protocol has been shown. The
tests  in simulation  and on hardware showed a stable  and robust  operation.  The protocol  is  not
suitable for all wireless connections, but specialized for networks with a fixed, small number of
nodes in confined space. For its purpose of enabling wireless connected avionics in satellites it
features all required characteristics and will be further developed and tested in the ongoing YETE
project.

The 4S Symposium 2016 – T. Mikschl



11

6 ACKNOWLEDGMENT

This  project  is  funded  by  the  DLR  agency  under  grant  no.  50RA1332,  what  is  gracefully
acknowledged.

7 REFERENCES

[1] F. Kempf et al., Reliable Networked Distributed On-Board Data Handling using a Modular
Approach with Heterogeneous Components, Wurzburg, DE.

[2]  IEEE  802.15.4  Standard-2011,  “Part  15.4:  Wireless  Medium  Access  Control  (MAC)  and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)”,
IEEE-SA Standards Board, 2011.

[3] P.~Moravek and V.~Stencel,  Honeywell  International,  UWB network demonstrator for space
applications, Czech Republic, 2014.

[4] DW1000 User Manual, Version 2.03, DecaWave Ltd, 2014.

[5] STMicroelectronics, Datasheet: STM32F405xx, STM32F407xx, Geneva, CHE, 2015.

[6] S. Montenegro, RODOS Real Time Kernel Design for Dependability, DLR, Bremen, DE,
2008.

[7] A. Boulis, Castalia User’s Manual Version 3.2, NICTA, Sydney, AUS, 2011.

The 4S Symposium 2016 – T. Mikschl


	1 INTRODUCTION
	2 ULTRAWIDEBAND
	3 THE PROTOCOL
	3.1 Simplified protocol sequence
	3.2 Initialization phase - the Hello cycle
	3.3 Sync phase - Reordering cycle
	3.4 Data phase - Nominal (synchronized) operation
	3.5 Micro Mode

	4 EVALUATION
	4.1 Simulation
	4.2 Hardware Testbed

	5 CONCLUSION
	6 ACKNOWLEDGMENT
	7 REFERENCES

