
The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

1

IMPLEMENTATION OF A NANOSATELLITE ON-BOARD SOFTWARE

BASED ON BUILDING-BLOCKS

M. F. Barschke
 (1)

, K. Großekatthöfer
 (1)

, S. Montenegro
 (2)

(1)

Technische Universität Berlin, Marchstr. 12–14, 10587 Berlin, Germany,

+49 30 314-28743, merlin.barschke@tu-berlin.de
(2)

Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany,

+49 931 31-83715, sergio.montenegro@uni-wuerzburg.de

ABSTRACT

In recent years, remarkable developments within the electronic industry, especially regarding

component miniaturisation and sensor technology, have broadly extended possible application areas

of pico- and nanosatellites.

While state-of-the-art COTS hardware is widely used in pico- and nanosatellite projects, the

approach to software is often less up-to-date. However, the full potential of a complex system such

as a satellite cannot be exploited without complementing the hardware with efficient and yet

flexible and well-structured software. Hence, modern software design is as important for the

satellites’ performance as powerful hardware components.

In this paper, we present the conceptual design of the TechnoSat on-board software in order to

demonstrate the advantages of a modern approach to satellite software design. TechnoSat, due to be

launched in 2015, is a TUBiX20 based satellite with the mission objective to validate several novel

nanosatellite components on orbit.

The TechnoSat on-board software runs on RODOS, which is a real-time operating system based on

building blocks; it was especially designed for satellite applications. While developing the software,

particular attention was paid to matching the software design with the distributed node architecture

of the hardware. As a result, their interaction and dependencies could be adjusted optimally to gain

maximum performance and reuse capabilities.

1 INTRODUCTION

TU Berlin is currently working on a novel nanosatellite platform series called TUBiX [1]. Two

versions of TUBiX are under development, TUBiX10 for 10 kg missions and TUBiX20 for 20 kg

missions [2].

S-Net is the first mission to be based on TUBiX10 [3]. Within this mission, four satellites will be

launched in 2016 to demonstrate multipoint inter-satellite communications in the S-band.

The first TUBiX20 mission is TechnoSat [4], which is scheduled to be launched in 2015 and carries

several newly developed nanosatellite components for on-orbit verification. Furthermore,

TechnoSat shall demonstrate the capabilities of the TUBiX20 platform to support its successor, the

TUBIN mission.

TUBIN (TU Berlin Infrared Nanosatellite) extends the platform’s capabilities to high accuracy

attitude control to achieve its primary mission objective, which is to demonstrate novel Earth

remote sensing technologies [5]. TUBIN carries two infrared micro bolometers, complemented by

an additional camera with sensitivity in the visible spectrum as payload and is scheduled to be

launched in 2016.

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

2

2 TECHNOSAT MISSION DESIGN

TechnoSat is a 20 kg satellite, whose primary mission objective is the on-orbit verification of

several nanosatellite components. The secondary mission objective is the development,

manufacturing, qualification and demonstration of TUBiX20, the novel nanosatellite platform of

TU Berlin. Figure 1 shows a CAD Model of TechnoSat.

Figure 1. CAD model of TechnoSat

The following payloads will be demonstrated on orbit within the TechnoSat mission:

Black body hatch (BBH)

The black body hatch is a device for in-flight calibration of infrared sensors. It consists of a dark

surface that can be moved in front of the sensor and then heated uniformly. In case of a failure in

the opening mechanism, an independent emergency mechanism can be activated to open the hatch

permanently. The black body hatch will be applied on the TUBIN mission, to calibrate the two

infrared micro bolometer arrays.

Fluid dynamic actuator (FDA)

As a novel actuator highly agile attitude control, the fluid dynamic actuator provides torques of up

to 20 × 10
-3

 Nm. It consists of a ring shaped tube with a diameter of 300 mm that is filled with

Galinstan, a liquid metal alloy. The metal can be accelerated within the tube by means of an

electromagnetic pump for momentum storage [6].

S-band transmitter (HISPICO)

HISPICO is a highly integrated S-band link for pico- and nanosatellites that provides a data

downlink with a rate of 1 Mbps [7].

Camera (CAM)

The camera shall provide payload-data for the verification of the HISPICO S-band transmitter.

Furthermore, it shall gather flight heritage for a lens, which will also be applied for a camera

payload of the TUBIN mission.

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

3

Nanosatellite laser ranging (NSLR)

TechnoSat is equipped with several commercial 10 mm laser retro reflectors for ground based high

precision orbit determination [8].

Reaction wheel system (RWS)

The reaction wheel system consists of four newly developed nanosatellite reaction wheels in

tetrahedron configuration. The same wheels will be used as primary actuators on the TUBIN

mission.

Solar generator based space debris impact detector (SOLID)

SOLID is an impact detection system, whose detector surfaces are located behind the satellites solar

cells. It allows for detecting objects of a size of 100 μm to 1 mm [9, 10].

Star tracker STELLA

STELLA is a nanosatellite star tracker that provides an accuracy of 0.01 degree around the pitch

and yaw axis and 0.04 degree around roll [11].

Table 1 lists the details of the TechnoSat mission, which is currently concluding phase C of the

development and is scheduled to be launched on a soyuz-fregat in 2015.

Table 1. TechnoSat mission details

Mission objectives
1st: on-orbit verification of novel nanosatellite components

2nd: development and on-orbit verification of the TUBiX20 platform

Design lifetime 1 year

Launch 2015

Satellite mass 20 kg

Satellite Volume 450 × 450 × 300 mm

Communication link UHF transceiver, experimental S-band transmitter

Attitude sensors
Fibre-optic rate sensors, Sun sensors, SMD magnetic field sensors,

MEMS gyros, experimental star tracker

Attitude actuators Magnetic torquers, experimental reaction wheels

3 TUBiX20 PLATFORM DESIGN

The TUBiX20 research is focussed on a system wide optimisation approach; instead of optimising

every subsystem individually, the entire system is considered while developing hard- and software

of the platform to maximise its overall performance. Additionally, hardware and software share a

common design approach. Their architectures are carefully matched to optimise their interactions,

while keeping the development effort low at the same time.

3.1 Systems Architecture

The TUBiX20 systems architecture is heavily influenced by the requirement of single-failure

tolerance for the platform. The architecture is based on a system of distributed microcontroller

nodes that fulfil required computation tasks and connect components to the central data-bus system.

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

4

While the distribution of basic subsystem functionalities on four main nodes follows a rather

traditional approach, certain other functionalities, such as the distribution of telecommands or new

software images, are implemented in a decentralised manner. Figure 2 shows the four main nodes of

TechnoSat, as well as their connection to power and data busses. In the following it is described,

which tasks are associated to each of the main-nodes.

TUBiX20 Bus

AOCS

COM

Power Bus System

Data Bus System
EPS

OBC

Figure 2. TUBiX20 main nodes.

Electrical Power System (EPS)

The electrical power system is responsible for power generation, conditioning and distribution.

Furthermore, it performs redundancy management for all cold redundant nodes and the power- and

data-bus system.

Communication System (COM)

The UHF link to the ground station is managed by the communication system. It transmits received

transfer frames to the ground and distributes telecommands received from the ground station using

the central data bus.

On-Board Computer (OBC)

Certain functionalities, such as telemetry storage and time-tagged telecommands management are

handled in a centralised manner by the on-board computer.

The Attitude and Orbit Control System (AOCS)

The attitude and orbit control system is responsible for the determination and control of the

satellite’s attitude using the available set of sensors and actuators.

3.2 Design Guidelines

In order to fully exploit the advantages of the distributed node architecture, while keeping the

overall implementation efforts low, consistent system wide standardization is applied. Therefore,

several design guidelines were established and consistently followed in the development of hard-

and software of the platform.

Modular design

On the on hand, the modular design is an essential factor for the platform’s adaptability to different

missions, payloads and orbits. On the other hand, it simplifies the development process of the

platform, as self-contained modules can be developed and tested separately.

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

5

Separation of functional units

While implementing a modular design, the level of modularity is of great importance. Basically,

TUBiX20 implements modularisation on the basis of functional units. One example for such a

functional unit is an integrated sensor board, which accommodates several sensors for attitude

determination. These sensors were not integrated in the solar panels, despite a possible reduction of

mass and volume, but integrated on a separated board. Here, the separation of the two functional

units i.e. the integrated sensor board and the solar panel is of greater importance, as it is necessary

to exploit the advantages of the modular design.

Unification of interfaces

Another key aspect of a modular design is the system wide unification of hard- and software

interfaces. Clearly defined interfaces allow for developing subsystems or even components to serve

these interfaces, without requiring a detailed knowledge of the functioning of other systems of the

platform.

Extensive reuse

Every component, circuit and software mechanism used on the satellite must be developed and then

tested thoughtfully. Furthermore, the modular approach of the platform implies certain overhead, as

all hard- and software must serve the standard interfaces. To minimise the development effort,

extensive reuse of components, circuitry and software is executed. The approach is based on the

fact that each node in the system requires a set of standard hard- and software elements. In terms of

hardware, these include, among others, the microcontroller, the data bus interface, mass memory

and a watchdog circuit. In software, applications for communication with other nodes, software

upload and for triggering the watchdog are required on every node. All these components and

applications are reused for every node in the system, hence they need to be developed and tested

only once.

3.3 Telemetry and Telecommanding

Telemetry contains measurements and status data of platform and payloads. Here, telemetry can be

divided into real-time and historical telemetry and at the same time into standard and extended

telemetry.

- Real-time telemetry is collected by the on-board computer and immediately sent to the

communication system for downlink to the ground station. Real-time telemetry is only

generated in response to a telecommand.

- Historical telemetry is periodically sent to the on-board computer by the different nodes and

stored for later downlink.

- Standard telemetry contains an essentialsubset of available measurements and constants.

The standard telemetry allows for verifying the overall health of the satellite, it is

exclusively generated by the four main-nodes of the platform (cf. section 3.1 Systems

Architecture).

- All additional telemetry generated by platform and payload, which is not included in the

standard telemetry, is referred to as extended telemetry.

To prevent loss of telemetry data and reduce the system’s complexity, the satellite will only

transmit as a direct response to a telecommand. An exception is a morse code beacon, which can be

activated to be sent periodically.

A telecommand received by the satellite is either just acknowledged, or responded to with a single

telemetry transfer frame. Telecommands that are published within the satellite by the

communication system are received by all nodes, which independently act upon the command if

necessary.

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

6

3.4 Data-Upload

Data, such as new software images or configuration data, which is uploaded to the satellite from the

ground station, is made available on the central data bus by the communication system and is then

directly received by the target node, so that no central processing unit is required.

4 TECHNOSAT SYSTEM DESIGN

Figure 3 gives an overview over the TechnoSat subsystems and payloads, as well as their

connections to the power- and the data-bus systems. TechnoSat features seven TUBiX20 nodes, i.e.

nodes that follow the TUBiX20 hard- and software design guidelines. Three of the payloads are so-

called alien nodes, which are connected to the redundant data bus system, but do not adhere to the

TUBiX20 hard- and software design guidelines (cf. section 3.2 Design Guidelines). They each

require a software application that runs on one of the TUBiX20 nodes and translates their custom

protocols to the TUBiX20 protocol and furthermore coordinates the telemetry generation.

Payloads
RWSPDH

TUBiX20 Bus

EPS

PCUPCU

solar cells

batteries

COM

COM

2x

UHF TRX

2x

UHF TRX

OBC

OBCOBC

TCS

temp.

sensors

temp.

sensors

AOCS

actuatorsAOCS

3x

torquer

3x

magnetic

torquer

PDH

HISPICO

Data Bus System
Power Bus System

COM

rate

sensor

3x rate

sensor

Legend

Subsystem or Payload

Hot-Redundant TUBiX20-Node

Cold-Redundant TUBiX20-Node

Alien-Node

CAM BBH SOLID

SOLIDSOLID

hatch
4x

detectors

STELLA

SOLIDSTELLA

FDA

SOLIDFDA

4x

RWS

RWS

camera hatchtransmitter

2x

UHF TRX

2x

UHF TRX

rate

sensor
FOR

rate

sensor

6x

integrated

sensor board

PDH

Figure 3. TechnoSat system overview.

5 TECHNOSAT ON-BOARD COMPUTER HARDWARE

The TechnoSat on-board computer hardware is a straightforward implementation of a TUBiX20

node. Central element of the on-board computer is a cold redundant microcontroller unit (MCU).

Each MCU features flash memory and non-volatile static random-access memory (nvSRAM) and is

supervised by an external hardware watchdog (WD). Both MCUs are connected to each of the CAN

busses. Furthermore, a number of temperature sensors (TMP) are connected to the I2C buses of the

MCUs.

Figure 4 shows a schematic of the on-board computer, containing its just mentioned main

components and their data interconnections. Solid lines in the diagram indicate the active parts and

dashed lines indicate the inactive parts of the node, for MCU1 being the active unit

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

7

TechnoSat OBC

I2C2

TMP2

CAN

TRX22

CAN2

MCU2

flash2

SRAM2

SPI

WD2

CAN

TRX21

TMP1

CAN

TRX12

MCU1

CAN

TRX11

unit 1

CAN1

flash1

SRAM1

WD1

SPI

I2C1

unit 2

EMIF EMIF

Figure 4. Schematic of the OBC electronics hardware.

6 RODOS OPERATION SYSTEM

The Real-time Onboard Dependable Operating System (RODOS) is an operating system for

embedded systems based on building blocks, which was designed for application domains

demanding high dependability [12, 13]. RODOS has its roots in the operating system BOSS and

was developed at the German Aerospace Center (DLR). It is applied, among others, within the

current micro satellite program of DLR. The open source project is currently coordinated by the

Julius Maximilian University of Würzburg, Germany.

RODOS is a framework that features a multilayer structure. While the first layer is responsible for

directly controlling the embedded hardware, a middleware runs on the second layer. This

middleware is responsible for the communication between applications and components that form

the top layer. The operating system is implemented object-oriented in C++, complemented by C and

assembly code for hardware specific tasks.

Throughout the development of RODOS, special attention was paid to implement its various

features in a simple, nevertheless robust way. Unnecessary complexity was avoided to provide the

user with a straightforward, clearly arranged system. The RODOS core and its middleware were

implemented in less than 3500 lines of C++ Code. In the following, some of RODOS features are

listed.

- Object-oriented C++ interfaces

- Ultra fast booting

- Real time priority-controlled preemptive multithreading

- Time management

- Thread safe communication and synchronisation

- Event propagation

- An integrated publish/subscribe middleware

The basic idea of RODOS is composing a complex software system out of a number of simple

components, the so-called building blocks. The aim is to define an environment where each

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

8

application can be developed independently from all other applications in the system. For this

purpose, three kinds of global interfaces need to be defined.

- The applications interface to the operating system

- The interface to the middleware, for interconnection of applications

- The interface to the application manager to be able to migrate applications

Figure 5 shows a building block with its interfaces to the operating system, the middleware and the

application manager.

Software Network
(Middleware)

Building Block

P
u

b
lis

h
e

rs

S
u

b
s
c
ri
b

e
rs

Application Mng

Thread Mng

Application Manager

Operating System (RODOS)

Figure 5: Interfaces of a building block.

Internally, a building block may consist of several threads, semaphores, event mangers, publishers

and subscribers, However, this internal structure is not relevant for other building blocks, as all

communication takes place via standardised interfaces. In the following, these interfaces are

described.

Thread management interface

The thread management interface allows the applications to communicate with the core operating

system; the RODOS core. Through this interface the building block requests resources in order to

publish its services. Examples for such resources are execution time, memory area or access to I/O

devices. Vice versa, the core operating system uses the thread management interface to forward

events to the application. Such events might be interrupts, timer events or device ready messages.

The RODOS core provides an object orientated interface with threads, semaphores, events, various

passive support classes and time information.

Software network interface

The RODOS middleware is the communication system that interconnects applications via their

software network interface. An application may subscribe to topics or services and publish

information and data in form of messages on the software network interface. Messages are

published under a given topic and any application that subscribes this topic receives the message. A

topic is represented by an ID and a data type. A message may be published only locally, i.e. only

within the given node, or globally, i.e. for all nodes in the system.

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

9

Application management interface

The application manager decides which application shall be running on which node; therefore each

application should provide an interface to the application manager. As applications on TechnoSat

may not be migrated to other nodes, no application manager is implemented.

For the communication of one microcontroller with others, RODOS features gateways that manage

the external communication. While publishing a message on a topic, an application can define,

weather the message is only published within the node, or if it is made available in the entire system

by the gateway.

7 TUBiX20 SOFTWARE INFRASTRUCTURE

The TUBiX20 software infrastructure implements the design guidelines (cf. section 3.2 Design

Guidelines) on side of the software. It is realised to minimise the software development efforts

despite the relatively high number of nodes in the system and thus complements the distributed

hardware system design. The software infrastructure defines the communication interface between

the nodes and provides a library with all generic software functionality which is implemented

identically for all nodes. Figure 6 shows a UML package diagram of the software infrastructure.

global

contracts

hw-dependabilities

common

applications

app-bootmanager

app-commander

app-dataUploadManager

app-nodeInfosapp-housekeeper

app-timeManager

app-watchdog

iom-gateways

Figure 6: UML package diagram of the TUBiX20 software infrastructure.

7.1 Contracts

The contracts include system wide definitions of ID constants, classes and topics.

ID Constants

Several constants must be defined system-wide, as they are used for object identification and other

information on systems level. In the following, some of these system-wide assigned IDs are listed:

- Anomaly IDs

- Application IDs

- Telecommand codes

- CAN-Bus addresses

Classes

The following class-definitions are used by all nodes and need therefore be identified on system

level:

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

10

- Source Packets

- Boot Images

- Telecommands

- Switch configurations of the electrical power system

Topics

Several topics are required for system-level communication. In the following a number of these

topics are describes exemplarily. However, if two or more nodes require additional topics for

information or data exchange, these also need to be implemented system-wide.

- rawTeleCommands

rawTeleCommands is used by the communication system to publish telecommands

originated from ground station. Each node subscribes to this topic to be able to receive

commands.

- commands

The commands topic is used by commander application to distribute received commands

within a node.

- anomalyReport

Anomalies can be reported by any application. They are managed and centrally stored by the

on-board computer. The applications report their anomalies on the anomalyReport topic.

- iAmAlive

In order to ensure that all crucial applications on the node are healthy, each application

reports its status in a periodical massage to the watchdog application on the iAmAlive topic.

7.2 Applications

The following applications are included in all nodes of the system. They provide a minimal set of

functionalities that are required for the node to interact with the system.

BootManager

The boot manager application is responsible for the boot process. It manages the list of images that

is used by the boot loader to decide which software image shall first be checked and loaded if

applicable. Furthermore, the boot manager can check software images that are stored in the external

flash after being uploaded to the satellite and copy these images to the internal flash.

Commander

On each node the commander receives all telecommands directly from the communication system

on the rawTeleCommands topic. The commander initiates the collection of standard real-time

telemetry, if requested. Furthermore, the it republishes the commands within the node, if the

command was addressed to the node the commander is running on.

DataUplaodManager

Large data packets that exceed the maximum size of one telecommand frame are received by the

DataUploadManager. The packets are transferred from the communication system directly to the

node in question.

Housekeeper

The housekeeper is responsible for collecting the standard telemetry of the corresponding node.

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

11

TimeManager

The TUBiX20 platform features a system wide distributed pulse-per-second (PPS) signal. The time

manager uses this PPS signal for synchronisation of the node-time with the hardware. Furthermore,

it distributes the time within the node. The power control unit is the time-master and publishes the

satellite time periodically on the corresponding topic.

Watchdog

Every TUBiX20 node features a hardware watchdog, which initiates a hard reset if not triggered by

the software periodically (cf. section 5 TECHNOSAT ON-BOARD COMPUTER HARDWARE).

The watchdog application supervises all critical applications of the corresponding node and only

triggers the watchdog if all those applications are healthy. Furthermore, the watchdog application

sends a periodic health message to the power control unit for redundancy management.

7.3 Common

Certain data and functionalities are independent of the applications and can therefore be shared

within a node. Common data is for example:

- Parameters of the global applications

- The processed commands counter

- The refused commands counter

Examples of common functionalities are:

- The PPS synchronisation

- Debug functions for data visualisation

7.4 I/O-Manager of the Gateway

Besides running it on the target controller, RODOS can as well be emulated in Linux. For

TechnoSat, this capability is used for development and verification purposes. Here, only one

building block on a node is platform specific, the I/O-manager of the gateway. It realises the

interface between the node and the data bus system. The implementation of the I/O-manager within

the flight software communicates via CAN bus, while the Linux emulation uses UDP.

7.5 Hardware Dependabilities

Besides platform specific applications, there are also platform specific functions. Platform specific

functions are for example:

- Reboot the current boot image

- Reboot with a different boot image

- Triggering the watchdog

- Check the node number

8 TECHNOSAT ON-BOARD COMPUTER SOFTWARE

Beside the functionality provided by the TUBiX20 software infrastructure, the TechnoSat on-board

computer implements certain node-specific functionalities:

- Anomaly management

- Telemetry transfer-frame assembly

- Satellite mode management

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

12

- Time-tagged command management

- Temperature sensor readout

The applications that perform these on-board computer specific tasks are described in more detail in

the following.

AnomalyReporter

Each application in the satellite can publish anomalies. The on-board computer subscribes to the

anomalyReport topic and records the anomaly as telemetry.

TransferFrameComposer

The transfer frame composer assembles the transfer frames, which are then handed over to the

communication system for transmission to the ground station. Each transfer frame starts with a set

of standard real-time telemetry and is than filled up with either further real-time telemetry or

historical telemetry or payload data.

ModeManager

TechnoSat incorporates three satellite modes, the LEOP (launch an early orbit phase) mode, the

nominal mode and the safe mode, which are managed by the ModeManager. The LEOP mode is

only entered upon the first activation of the on-board computer. After checking all satellite systems,

the nominal mode is entered via telecommand. If any node reports a critical anomaly, the on-board

computer enters safe mode. As TechnoSat implements an open mode concept, the operation of the

satellite via telecommands is not restricted in safe mode.

Upon entering safe mode, however, the power control unit establishes a defined state of the satellite

regarding powered components and the collection of extended historical telemetry is stopped, so

that only standard historical telemetry is sampled. Figure 7 shows the diagram illustrating the

TechnoSat satellite modes.

Figure 7. TechnoSat satellite modes.

TimedCommandsManager

Time tagged commands are required to perform payload experiments, when the satellite is not in

contact with the ground station. Time tagged commands are managed in a centralised manner i.e. by

the on-board computer. All time-tagged commands are stored in one time-tagged command list.

Before this list can be executed, it needs to be activated via telecommand. The time tagged

command list is deleted if a critical anomaly occurs or when the on-board computer is rebooted.

Safe Mode

Nominal Mode

LEOP Mode

[inLEOP]

reset

OBC switched on

off

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

13

TemperatureReporter

As TechnoSat implements a passive thermal control system and therefore does not feature a

dedicated thermal control computer, the temperature sensors are connected to existing nodes, i.e.

the power control unit, the on-board computer and the attitude-control computer. This application

manages the sampling of the temperature sensors which are connected to the on-board computer.

9 CONCLUSIONS

TechoSat is based on TUBiX20, a nanosatellite platform for 20 kg missions that is currently

developed at TU Berlin. TUBiX20 features a single-failure tolerant platform design and follows a

system wide optimisation approach, which is based on an extensive reuse of hard and software

elements within the system. The satellite software is based on the modern building block operation

system RODOS. All basic functionality is provided by a software infrastructure, which is

identically implemented on every node of the satellite. In this manner, development and testing

efforts for these functionalities are kept to a minimum, as compared to an individual

implementation for every node. The on-board computer software additionally implements

centralised functionalities such as time-tagged command management or telemetry transfer frame

assembly.

ACKNOWLEDGEMENTS

The TechnoSat project is funded by the Federal Ministry of Economics and Technology (BMWi)

through the German Aerospace Center (DLR) on the basis of a decision of the German Bundestag

(Grant No. 50 RM 1219).

REFERENCES

[1] M. F. Barschke, Z. Yoon and K. Brieß (2013). TUBiX – The TU Berlin Innovative Next

Generation Nanosatellite Bus. In: Proceedings of the 64th International Astronautical

Congress, September 23 – 27, Beijing, China.

[2] M. F. Barschke, F. Baumann, W. Ballheimer, K. Grossekatthoefer, C. Nitzschke and K. Brieß

(2013). TUBiX20 - The novel Nanosatellite Bus of TU Berlin. In: Proceedings of the 9th IAA

Symposium on Small Satellites for Earth Observation, April 8 – 12, Berlin, Germany.

[3] Z. Yoon, W. Frese, K. Briess, A. Bukmaier (2014). System design of an S-band network of

distributed nanosatellites. CAES Space Journal. 6 (1). pp. 61 – 71.

[4] M. F. Barschke, H. Adirim, O. Balagurin, W. Ballheimer, L. Dornburg, H. Kayal, D. Noak, C.

Nitzschke, N. A. Pilz, H. Wojtkowiak and K. Brieß (2013). TechnoSat - A Nanosatellite

Mission for On-Orbit Technology Demonstration. In: Proceedings of the 27th AIAA/USU

Conference on Small Satellites, August 10 – 15, Logan, USA.

[5] F. Baumann, W. Ballheimer, K. Großekatthöfer, C. Nitzschke, K. Briess (2012). TUBIN – A

Nanosatellite Mission with Infrared Imager Payload, In: Proceedings of the 4S Symposium,

June 4 – 8, Portoroz, Slovenia.

[6] D. Noack, K. Brieß (2014). Laboratory investigation of a fluid-dynamic actuator designed for

CubeSats. Acta Astronautica. 96. pp. 78 – 82.

[7] K. Brieß, R. Alavi, K. Jäckel and H. Podolski (2008). S-Band Communication for Nano- and

Pico Satellites for Cross Platform Compatibility, In: Proceedings of the 59th International

The 4S Symposium 2014 – M. F. Barschke, K. Großekatthöfer, S. Montenegro

14

Astronautical Congress, September 29 – October 3, Glasgow, Scotland.

[8] G. Kirchner, L. Grunwaldt, R. Neubert, F. Koidl, M. F. Barschke, Z. Yoon and H. Fiedler

(2013). Laser Ranging to Nano-Satellites in LEO Orbits: Plans, Issues, Simulations. In:

Proceedings of the 18th International Workshop on Laser Ranging, November 11 – 15,

Fujiyoshida, Japan.

[9] W. Bauer, O. Romberg, C. Wiedemann, G. Drolshagen and P. Vörsmann (2012).

Development of in-situ Space Debris Detector, In: Proceedings of COSPAR-39th Scientific

Assembly, July 14 – 22, Mysore, India.

[10] W. Bauer, O. Romberg, C. Wiedemann, R. Putzar, F. Schäfer, G. Drolshagen and P.

Vörsmann (2012). HVI-Test Setup of In-Situ Space Debris Detector, In: Proceedings of the

63rd International Astronautical Congress, October 1 – 5, Naples, Italy.

[11] O. Balagurin, H. Kayal and H. Wojtkowiak (2012). Validation and qualification of a CMOS

based miniature star tracker for small satellites. In: Proceedings of the 4S Symposium, June

4 – 8, Portoroz, Slovenia.

[12] S. Montenegro, F. Dannemann (2009). RODOS: Real Time Kernel Design for Dependability,

In: Proceedings of Data Systems in Aerospace (DASIA), Istanbul, Turkey, May 26 – 29.

[13] S. Montenegro (2013). Visionary data management system for nano satellites (VIDANA), In:

Proceedings of the 9th Symposium on Small Satellites for Earth Observation, April 8 – 12,

Berlin, Germany.

