
Network Centric Core Avionics
Dr. Sergio Montenegro (sergio.montenegro@dlr.de)

Lutz Dittrich (lutz.dittrich@dlr.de)

DLR-RY
Rober-HookeStr 7
D-28359 Bremen

Dependability is a main issue for space applications and after more than 30 years of re-
search, how to achieve dependable computing, the general solution has not been found.
There are many proposals how to achieve fault tolerance, or robustness or fault preven-
tion etc, but not a single global accepted solution.
The main risk factors in a typical core avionics development are the complexity, software-
hardware interfaces and the difficulties to handle many different interfaces in a single
system. These topics shall be addressed in order to get high dependability.

Typical data systems for space applications are computer centric. The central component
is a computer to which all (many) devices are attached. The computer has to handle de-
vices, communication, computing, and storage of data.
We aim to create a new concept of core avionics systems which targets fault tolerance as
a natural part of the concept. In our approach the central component shall not be the
computer but a distributed fault tolerant network system. We provide dependability to
the network and to this network a set of undependable redundant components can be
attached like for example devices, simple computing units, mass memory units, etc. Any
of these devices may fail and the network manager will deactivate the failed device and
activate a redundant one producing the same services like the failed.

The most effective and safe way to implement a complex parallel system is to compose it
as a network of simple sequential tasks. These tasks may be executed by software like for
example steering control or by hardware components like for example providing tem-
perature measurements. We aim to unify software and hardware so there shall no be
difference if services are provided by software or by hardware. All service providers com-
municate using the same communication protocol and unified messages. All services use
the same interface. For the user of a service there shall be no difference in how it was
implemented (software, hardware, both) and where is being executed (in which comput-
ing node or device).

The core avionics system becomes a distributed computer system. No single node is re-
quired to be dependable. The nodes are connected by a dependable network, which is
the heart of the system. Software services can be distributed on all computer nodes and
may migrate from one node to another for example in case of node-failures, overloading
or for power management purposes. In this way it is possible to compose a reliable sys-
tem out of unreliable parts. The network is based on a publisher/subscriber protocol
which is implemented in a software middleware for the software tasks and in a FPGA as
a middleware switch for hardware devices and to interconnect computing nodes and
mass memories.

mailto:sergio.montenegro@dlr.de
mailto:lutz.dittrich@dlr.de

1 The First step toward dependable computing

Our first step designing dependability for space computers was first used in the (DLR-)
BIRD satellite. In this architecture there are two or four redundant control computers,
each of the nodes is able to execute all control tasks. One node (the worker) is controlling
the satellite while a second node (supervisor) is supervising the correct operation of the
worker node. If an anomaly of the worker node is detected by the supervisor node, the
supervisor takes over the control of the satellite and becomes the new worker node. The
old worker node is enforced to execute a recovery function and if there is no permanent
error detected, it becomes the supervisor node.

2 Integrated software and hardware structures

The next step to improve this structure was a software-only step. While the hardware
structure stayed the same, the software structure was improved by adding a middleware
(for communication). Instead of having many different interfaces, for example among
applications or between application and I/O-drivers, there is only one interface for all
communications in the system. The middleware provides a message-interface which can
be used to interchange data among all entities in the system. Therefore there is no extra
I/O- driver interface. I/O-devices are controlled by applications which are called I/O-
managers.

Another improvement is the inter-node communication. The functionality of the system is
implemented as a network of applications which can be distributed among many com-
puters in the system (Figure 1).

 Figure 1: communicating applications

3 The Middleware Switch

3.1 Middleware architecture

The next step is to unify software and hardware in an integrated architecture. Figure 2
shows a typical data/control flow to access I/O-devices.

Figure 2: typical data/control flow from devices to applications

The capabilities of the FPGA (programmable hardware) emerging technology allows us to
implement middleware functionality directly in the hardware I/O-interface to reach a
structure like in figure 3. Our intension is to implement our middleware in form of an
Application Specific Integrated Circuit (ASIC).

Figure 3: merging software and hardware in the Middleware

The I/O interface (traditionally an UART) will then have on one side the required device
interface and on the other side it will be directly integrated to the middleware protocol.
The structure from figure 2 can then be extended to the structure in figure 4.

An embedded controller in the middleware switch recognizes communication requests
from the I/O ports and connects/disconnects the ports accordingly. For cost-sensitive ap-
plications we will also investigate how it could be done to manage I/O links automatically
by hardware without need of software controlled embedded processing resources.

Figure 4: I/O-interfaces integrated in the Middleware

	1 The First step toward dependable computing
	2 Integrated software and hardware structures
	3 The Middleware Switch
	3.1 Middleware architecture

