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 Abstract – Floating satellite (FloatSat) platform is utilized 

for testing and evaluation of Pico/Nano satellite in nearly a 

frictionless environment. In this paper, we have presented its 

basic setup and applications regarding communication and 

control of its speed and velocity. This proposed educational 

hardware setup serves as a benchmark for students to learn 

basic satellite systems/subsystems. Furthermore, the setup can 

be utilized to test and evaluate control algorithms for various 

satellite systems and subsystems.   

 

Index Terms: satellite subsystem, RODOS, Aerospace, Operational 

modes of satellite, satellite test, and evaluation 

 

I. INTRODUCTION  

In the field of Aerospace technology, various projects 

were done to simulate a small satellite or test/evaluate 

satellite subsystems such as the 3DoF test bench for CubeSats 

[1], simulation satellite [2], the open prototype for 

educational nanosats [3], robotic test bench [4], CubeSat 

simulator [5], and satellite balancer [6]. The focus of this 

communication is on the Floating Satellite (FloatSat) [7] 

platform specifically designed for students to get familiar 

with basic satellite subsystems. Furthermore, the proposed 

educational platform gives a unique opportunity to develop 

and test various attitudes and control algorithms of a satellite 

in a frictionless space-like environment.  

The proposed FloatSat platform is shown in Fig. 1. It 

consists of the basic satellite subsystems. To control the 

orientation of the satellite in one dimension a reaction wheel 

is mounted at the center of the horizontal plane of the 

mechanical structure. Various electrical and mechanical 

components are integrated to simulate a basic satellite  

Section II describes the hardware incorporated in FloatSat 

which is controlled by Real-Time On-Board Dependable 

Operating System (RODOS). Section III provides a brief 

introduction to RODOS. Followed by a brief description of 

various applications such as extraction of sensor data, 

wireless connectivity of hardware in real-time, satellite 

attitude control along with results in section IV. Finally, a 

conclusion is drawn at the end in section V.  

 

 

 
Fig 1. Floating Satellite (FloatSat) platform.   

 

II. HARDWARE PLATFORM 

The spherical Air Bearing Unit (SABU) is the most important 

part of the FloatSat. This air-bearing unit has a very smooth 

finished inner surface and holes. These holes provide the 

pressurized Air to lift the mass up in the Air to about 1mm. 

The weight of the spherical air bearing unit is 2.75 kg and its 

inner diameter is 18.22 cm. The two acrylic hemispheres 

cover the FloatSat avionic system. These shells are made 

according to the curve surface of the air bearing unit. It 

moves freely to achieve a frictionless environment. The 

diameter of the hemisphere shell is about 20cm and its weight 

of 155g. The FloatSat is the frame that contains the avionics 

of the system. The FloatSat with basic modules has a total 

weight of 1.19kg. These modules interact with each other to 

achieve the basic functionality of a real satellite. The 

different modules utilized in FloatSat are shown in Fig. 2.  

The Reaction wheel attached to the bottom end of the 

FloatSat is used to generate torque when the rotational speed 

of the wheel is changed. The weight of the reaction wheel on 

FloatSat is 280g. The moment of inertia produced by the 

wheel is 1.175x10-4 kgm2. A brushed dc motor is attached to 

run the reaction wheel. At 12V the motor is running at 11000 

revolutions per minute (RPM) with a current of 300mA. The 

generated torque is 0.3 kgm2.  In FloatSat, this motor is 

powered by a 5V dc. The maximum motor current at 5V is 

170mA and the motor speed is 4616 RPM.  



The power source of the FloatSat is the two Lithium Iron 

Phosphate (LiFePo4) batteries. There are 2 cells in a single 

battery with a capacity of 2100mah. The battery is fully 

charged at 7.2V with the balance charge. There are 2 cells in 

a single battery with a capacity of 2100mah. The battery is 

fully charged at 7.2V with the balance charge.  

STM32F407G DISC-1 is the microcontroller used to 

control all modules’ functionality in FloatSat. HC-06 

Bluetooth device is used to send and receive data wirelessly 

over a distance of fewer than 100 meters. LSM9DS1 is an 

IMU used to calculate the object velocity, orientation, and 

gravitational forces using the combination of an 

accelerometer, gyroscope, and magnetometer. A voltage 

regulator is a DC-DC step-down converter used to power up 

all the electrical components in the FloatSat system. The 

input operating voltage is 6-38V and the output voltage is 5V. 

Motor Driver is used for controlling the motor speed and 

direction with a PWM signal and two GPIO signals 

respectively. 

 

 
Fig 2. FloatSat Modules 

  

III. SOFTWARE PLATFORM 

The software architecture of floating satellites is based on 

Real-Time On-Board Dependable Operating System 

(RODOS) [8]. Every thread inside RODOS runs parallel to 

each other in Real-time. The current version of RODOS is 

developed for the STM32F407G discovery board. However, 

it can be tailored for other devices. The software components 

in RODOS adjust each other to provide dependable 

computing [9]. RODOS framework is illustrated in Fig. 3. 

RODOS control both the operating system (OS) and 

microelectromechanical system (MEMS). On the top, there is 

the software middleware (MW), around MW the user 

implements its application program (AP). Each node provides 

a gateway to communicate with the external network and 

input/output (I/O) device. There are around 48 library header 

files, to govern the RODOS operating system. Application 

Programmable Interface (API) accesses the data and interacts 

with external hardware and software components. 

 

Fig. 3. RODOS framework. 

 

IV. APPLICATIONS 

     In this section, we will describe some of the applications 

tested on top of RODOS on FloatSat hardware. The results of 

each are discussed along with its implementation.    

 

A. INERTIAL DATA EXTRACTION AND ESTABLISHING 

CONNECTIVITY.  

The first step is to establish a basic configuration and set 

up the wireless communication link between the FloatSat and 

PC. In this regard, the LSM9DS1 Inertial Measurement Unit 

(IMU) is utilized in FloatSat for measuring the object's 

velocity, orientation, and gravitational force with 9 Degree of 

Freedom, 3 degrees for each gyroscope, accelerometer, and 

magnetometer. The IMU uses the I2C protocol to interact 

with the controller device. Each axis in 9DOF has a 16-bit 

data output. The sensitivity range for each sensor in IMU is 

configurable and has an embedded temperature sensor inside 

it. IMU Data includes 3-axis gyroscope values, 3-axis 

accelerometer values, 3-axis magnetometer values, and pitch, 

roll, and yaw values of the system. Initial calibration for the 

gyroscope and accelerometer can be done by taking the 1000 

samples for each axis in a standstill position. These samples 

are then averaged to generate bias values corresponding to 0 

deg/sec measurement. The angular velocity and linear 

acceleration can be calculated by using the calibrated bias 

values and the corresponding equations for pitch, roll, and 

yaw. Next, the partial derivatives of pitch, roll, and yaw are 

calculated. Finally, the orientation angles of the system 

concerning the fixed coordinate system can be calculated 

using the Euler convention. The calibration process for the 

magnetometer can be done by calculating the minimum and 

maximum value for all three axes by rotating the sensor in all 

directions. 

To establish wireless communication HC-06 Bluetooth 

module is used for short-range wireless data communication 

between the microcontroller and PC. The data rate is 2.1 

Mb/s. FTDI32-TTL module is used to configure the baud rate 

of the HC-06 module. This is done to connect Bluetooth 



using the UART protocol with the RODOS library. Pair the 

Bluetooth Module with the PC and link it with Hyper-

Terminal with the correct COM port to examine the data. The 

algorithm for the purpose is as follows: 

• Make a write function to send the data on the UART 

port inside Bluetooth Thread.   

• Make a Bluetooth thread to process the data.  

• Initialize the peripheral parameters.  

• Loop inside Bluetooth thread runs every 1 second. 

• Data is printed on Hyper-terminal by writing the data 

into a string.  

After implementing the algorithm on eclipse IDE, we get 9-

DoF values, 3 for each gyroscope, magnetometer, 

accelerometer, and orientation angles pitch, roll, and yaw on 

hyper-terminal as shown in fig. 4. 
 

 
Fig 4. IMU Data Extraction 

 

B. ATTITUDE CONTROL ALGORITHM 

The control system is a crucial part of any dynamic 

system in which the output of the system tracks the desired 

input and output is feedback to compare with the desired 

input to reduce error. This closed-loop system is very 

important against unmeasured disturbances to keep track of 

input. The attitude control algorithm in FloatSat dynamics is 

completely based on the published subscribed protocol as 

shown in Fig. 5. In this system, some threads represent the 

publisher sending the data on communication channels called 

topics, and some threads represent subscribers to get the data 

from the topics after getting registered to it. 

  

 

Fig 5. Publish Subscribed Network 

The Attitude Control Algorithm for the FloatSat has four 

main threads that communicate with each other via 

communication channels i.e. sensor thread, telecommand 

thread, telemetry thread, and mode thread. The Description 

for these threads is as follows: 

 

a. Sensor Thread 

The first thread is the “Sensors” thread that runs at a 5ms 

time interval. This thread collects sensor information, 

processes them, and then publishes the data stored in the 

"sensor Data" structure into the "Sensor Data Topic" to be 

received by other threads. All the values of sensors i.e. 

angular velocity, linear acceleration, Magnetic Flux density, 

pitch, roll, yaw, temperature, and motor speed are computed 

under this thread. Next, filters are used to minimize the error 

of attitude estimation. Mahoney and Madgwick filters are 

implemented instead of simple complementary filters because 

under complementary filters attitude error is ignored and the 

case drifts over time resulting in wrong measurements. The 

flow chart of the sensor thread is shown in Fig. 6 and its 

working algorithm is as follows: 

 

• Sensor Thread class computes the IMU parameters.  

• Initialize peripherals i.e. SPI, ADC, and Encoder. This 

is done to link peripherals with the RODOS library.  

• If IMU is not properly connected, send the error 

message "Failed to communicate with IMU" and end 

the thread.  

• If IMU data is ready to compute parameters. Calibrate 

the Gyroscope, to remove the initial error. 

• Time-Loop is running every 5ms to collect the 

(Attitude Heading Reference system) AHRS values. 

The AHRS contains a different filter to find IMU data 

with minimum error. 

• Calculate Motor speed and motor current. 

• All the sensor data is being published on the sensor 

data topic to be received by subscribers. 

 

 

b. Telecommand Thread 

The second thread is the “Telecommand” thread that runs 

once data is received. This thread decodes the received 

telecommand messages and publishes the data stored in the 

telecommand data structure into the telecommand data topic 

to be received by other threads. This is done only if the 

message is valid. The message body of the telecommand 

should have the following format “$Xdata#”  

Where, 

“$” is the Message Start Character [1 byte]. 

“#” is the Message End Character [1byte]. 

“X” is the Message-ID Character [1 byte]. 

 

 



 
Fig. 6. Algorithm of Sensor Thread 

 

Data are ASCII characters that correspond to a valid 

floating-point number [0 –12 bytes]. The message ID 

character includes: 

• ON and OFF the Telemetry data bypassing T1 and T0 

as a message ID respectively.  

•  Attitude Heading Reference System (AHRS) Mode 

from A1 through A8 for Computing Sensor Data 

through different Filters. By Default, AHRS mode is 

set to Mahoney Filter if the command is not sent 

manually. 

• System Mode form M0 through M2 for going to 

Standby mode, Speed mode, and Velocity mode 

respectively. After entering the respective mode, pass 

the value of motor speed and FloatSat Velocity e.g. 

S+200 and V+20 respectively.  

The sample telecommand sequence for velocity mode and 

then set velocity to 50 deg/sec is "$M2#" and "$V+50#" 

respectively. Fig. 7 describes the working of the 

Telecommand thread, which is explained as follows: 

 

 
Fig. 7. Algorithm of Telecommand Thread 

 

• Initialize the peripherals for Telecommand i.e. LED 

and a baud rate.  

• The while loop is running to decode the data. 

• Suspend until the new data come to the receive 

buffer. The new data is the command given by the 

user.  

• If new data is received in the buffer, the thread will 

read the data. 

• Decode the received data according to the 

telecommand pattern discussed earlier. 

 



c. Telemetry Thread 

The third thread is the “Telemetry” thread runs at a 

1000ms time interval. Fig. 8 shows telemetry data including 

Accelerometer Axis, Gyroscope Axis, Magnetometer Axis, 

yaw, pitch, roll, motor speed, and motor current. This thread 

publishes the sensor’s information to the ground station i.e. 

Hyper-Terminal. 

 

 
Fig. 8. Telemetry On Hyper-Terminal 

 

Fig. 9 describes the working of the Telemetry thread, 

which is explained as follows: 

• The time loop is running and prints data on the 

terminal every 1 second. 

• This thread receives sensor data and telecommand 

data. 

• If this thread receives telecommand related to 

telemetry, the data is printed on Hyper-terminal. 

 
Fig. 9. Algorithm of Telemetry Thread 

 

d. Modes Thread 

 

The fourth thread is the “Modes” thread runs at a 10ms 

time interval. This thread runs a different operation mode for 

the FloatSat. There are two main modes of operation i.e.  

• Speed control mode 

• Velocity control mode 

The PI controller is implemented to control the motor 

speed and a complete description of the code is given in Fig. 

10. The reference speed is given by the user by sending a 

related telecommand. The speed calculation from the encoder 

is the actual speed. Reference speed is subtracted from the 

actual speed to generate the error value. This error is 

computed in the PI controller and a control signal is 

generated. This signal passes to the actuator signal generator 

to compute the direction and PWM signals accordingly. The 

PWM and direction signal goes to the H-Bridge motor driver 

and outputs the desired current. Then the encoder calculates 

the actual speed and feeds it back to compute the error. This 

feedback loop runs until zero error is achieved and also 

counteracts unmeasured disturbances. 

 

 
Fig. 10. Algorithm of Speed Mode 

 

After implementing this we get the result in which the 

telecommand sends to achieve the motor speed of 1000 rpm 

and the motor speed is set to our desired value as shown in 

Fig. 11. 

 

 
Fig. 11. Output on hyper terminal for motor speed mode. 

 



For controlling the FloatSat velocity, the PI controller is 

implemented and Fig. 12 describes the velocity mode 

behavior. The input velocity is given by the user by sending 

related telecommands. The IMU measures the angular 

velocity which is the actual velocity of the Floating Satellite. 

The actual velocity is subtracted from the reference velocity 

to calculate the error. This error is then computed in the PI 

controller and a control signal is generated. The PWM signal, 

direction signal, and currents are generated from the H-bridge 

motor driver. The Floating Satellite system stabilizes itself to 

the desired velocity by feeding back the IMU data of the 

moving Satellite until zero error is achieved. 

 
Fig. 12. Algorithm of Velocity Mode 

 

After completing this on Eclipse IDE, (as in Fig. 13) the 

following result in which the telecommand related to velocity 

is sent and achieves the same velocity as the value of gz 

which is 30 deg/s on the hyper-terminal. 

 

 
Fig. 13. Output on hyper terminal for velocity mode. 

 
 

IV. DEBRIS DETECTION MISSION 

In this section the space debris detection mission is briefly 

explained. The space debris detection mission is designed, 

developed and implemented for students to understand 

working of a basic radar system which serves to protect the 

satellite from space junk present in satellite surroundings. 

Initially, the application is designed to identify the space junk 

covering 180° in azimuth plan. The hardware setup is shown 

in Fig. 14. Where, arduino board along with ultrasonic sensor 

and dc motor can be seen. 

 

 

Fig. 14. Space debris detection mission with 180° coverage.  

 

The space debris detection mission is further improved by 

implementing it utilizing STM32 so that it could be 

integrated with FlaotSat hardware. Furthermore, the coverage 

is also extended to 360° in azimuth plan. The required 

necessary threads are added in RODOS to achieve required 

functionality. The complete mission is integrated with 

FloatSat as shown in Fig. 15. The radar integrated with 

floatsat can detect the object in 50 cm range around the 

FloatSat. The range of 50 cm is expected to be enhanced by 

utilizing Frequency modulated continues wave (FMCW) 

radar in future. Where, instead of ultrasonic sensors a highly 

directive planar antenna will be utilized along with complete 

RF/microwave transceiver.   

 

 

Fig. 15. Space debris detection mission with 360° coverage 

and integrated with FloatSat hardware.  

 

V. CONCLUSION 

In this paper, we have discussed the basic hardware and 

software setup of FloatSat. The FloatSat platform in basic 

configuration can be utilized to implement various satellite 

missions. Furthermore, it can be very efficiently utilized to 

verify customized algorithms for test and evaluation of 

satellite systems and subsystems such as satellite telemetry 



and telecommand, satellite attitude control, satellite speed, 

velocity control, etc. Furthermore, a space debris detection 

mission is designed and integrated with floatsat hardware.   
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