
An Educational Platform for Testing and Evaluating

Satellite Control Algorithms in a Real-Time and

Frictionless Environment.

Khubaib Ahmad1, Atheel Redah2, Arslan Arif1, Awais A Khan3, M Kamran Saleem1, and Sergio

Montenegro2

1Electical Engineering Department, Faculty of Engineering, University of Central Punjab, Lahore, Pakistan.
2Institute of Aerospace Information Technology, Julius-Maximilians University, Wurzburg, Germany.
3Mechanical Engineering Department, University of Engineering and Technology, Lahore, Pakistan.

 Abstract – Floating satellite (FloatSat) platform is utilized

for testing and evaluation of Pico/Nano satellite in nearly a

frictionless environment. In this paper, we have presented its

basic setup and applications regarding communication and

control of its speed and velocity. This proposed educational

hardware setup serves as a benchmark for students to learn

basic satellite systems/subsystems. Furthermore, the setup can

be utilized to test and evaluate control algorithms for various

satellite systems and subsystems.

Index Terms: satellite subsystem, RODOS, Aerospace, Operational

modes of satellite, satellite test, and evaluation

I. INTRODUCTION

In the field of Aerospace technology, various projects

were done to simulate a small satellite or test/evaluate

satellite subsystems such as the 3DoF test bench for CubeSats

[1], simulation satellite [2], the open prototype for

educational nanosats [3], robotic test bench [4], CubeSat

simulator [5], and satellite balancer [6]. The focus of this

communication is on the Floating Satellite (FloatSat) [7]

platform specifically designed for students to get familiar

with basic satellite subsystems. Furthermore, the proposed

educational platform gives a unique opportunity to develop

and test various attitudes and control algorithms of a satellite

in a frictionless space-like environment.

The proposed FloatSat platform is shown in Fig. 1. It

consists of the basic satellite subsystems. To control the

orientation of the satellite in one dimension a reaction wheel

is mounted at the center of the horizontal plane of the

mechanical structure. Various electrical and mechanical

components are integrated to simulate a basic satellite

Section II describes the hardware incorporated in FloatSat

which is controlled by Real-Time On-Board Dependable

Operating System (RODOS). Section III provides a brief

introduction to RODOS. Followed by a brief description of

various applications such as extraction of sensor data,

wireless connectivity of hardware in real-time, satellite

attitude control along with results in section IV. Finally, a

conclusion is drawn at the end in section V.

Fig 1. Floating Satellite (FloatSat) platform.

II. HARDWARE PLATFORM

The spherical Air Bearing Unit (SABU) is the most important

part of the FloatSat. This air-bearing unit has a very smooth

finished inner surface and holes. These holes provide the

pressurized Air to lift the mass up in the Air to about 1mm.

The weight of the spherical air bearing unit is 2.75 kg and its

inner diameter is 18.22 cm. The two acrylic hemispheres

cover the FloatSat avionic system. These shells are made

according to the curve surface of the air bearing unit. It

moves freely to achieve a frictionless environment. The

diameter of the hemisphere shell is about 20cm and its weight

of 155g. The FloatSat is the frame that contains the avionics

of the system. The FloatSat with basic modules has a total

weight of 1.19kg. These modules interact with each other to

achieve the basic functionality of a real satellite. The

different modules utilized in FloatSat are shown in Fig. 2.

The Reaction wheel attached to the bottom end of the

FloatSat is used to generate torque when the rotational speed

of the wheel is changed. The weight of the reaction wheel on

FloatSat is 280g. The moment of inertia produced by the

wheel is 1.175x10-4 kgm2. A brushed dc motor is attached to

run the reaction wheel. At 12V the motor is running at 11000

revolutions per minute (RPM) with a current of 300mA. The

generated torque is 0.3 kgm2. In FloatSat, this motor is

powered by a 5V dc. The maximum motor current at 5V is

170mA and the motor speed is 4616 RPM.

The power source of the FloatSat is the two Lithium Iron

Phosphate (LiFePo4) batteries. There are 2 cells in a single

battery with a capacity of 2100mah. The battery is fully

charged at 7.2V with the balance charge. There are 2 cells in

a single battery with a capacity of 2100mah. The battery is

fully charged at 7.2V with the balance charge.

STM32F407G DISC-1 is the microcontroller used to

control all modules’ functionality in FloatSat. HC-06

Bluetooth device is used to send and receive data wirelessly

over a distance of fewer than 100 meters. LSM9DS1 is an

IMU used to calculate the object velocity, orientation, and

gravitational forces using the combination of an

accelerometer, gyroscope, and magnetometer. A voltage

regulator is a DC-DC step-down converter used to power up

all the electrical components in the FloatSat system. The

input operating voltage is 6-38V and the output voltage is 5V.

Motor Driver is used for controlling the motor speed and

direction with a PWM signal and two GPIO signals

respectively.

Fig 2. FloatSat Modules

III. SOFTWARE PLATFORM

The software architecture of floating satellites is based on

Real-Time On-Board Dependable Operating System

(RODOS) [8]. Every thread inside RODOS runs parallel to

each other in Real-time. The current version of RODOS is

developed for the STM32F407G discovery board. However,

it can be tailored for other devices. The software components

in RODOS adjust each other to provide dependable

computing [9]. RODOS framework is illustrated in Fig. 3.

RODOS control both the operating system (OS) and

microelectromechanical system (MEMS). On the top, there is

the software middleware (MW), around MW the user

implements its application program (AP). Each node provides

a gateway to communicate with the external network and

input/output (I/O) device. There are around 48 library header

files, to govern the RODOS operating system. Application

Programmable Interface (API) accesses the data and interacts

with external hardware and software components.

Fig. 3. RODOS framework.

IV. APPLICATIONS

 In this section, we will describe some of the applications

tested on top of RODOS on FloatSat hardware. The results of

each are discussed along with its implementation.

A. INERTIAL DATA EXTRACTION AND ESTABLISHING

CONNECTIVITY.

The first step is to establish a basic configuration and set

up the wireless communication link between the FloatSat and

PC. In this regard, the LSM9DS1 Inertial Measurement Unit

(IMU) is utilized in FloatSat for measuring the object's

velocity, orientation, and gravitational force with 9 Degree of

Freedom, 3 degrees for each gyroscope, accelerometer, and

magnetometer. The IMU uses the I2C protocol to interact

with the controller device. Each axis in 9DOF has a 16-bit

data output. The sensitivity range for each sensor in IMU is

configurable and has an embedded temperature sensor inside

it. IMU Data includes 3-axis gyroscope values, 3-axis

accelerometer values, 3-axis magnetometer values, and pitch,

roll, and yaw values of the system. Initial calibration for the

gyroscope and accelerometer can be done by taking the 1000

samples for each axis in a standstill position. These samples

are then averaged to generate bias values corresponding to 0

deg/sec measurement. The angular velocity and linear

acceleration can be calculated by using the calibrated bias

values and the corresponding equations for pitch, roll, and

yaw. Next, the partial derivatives of pitch, roll, and yaw are

calculated. Finally, the orientation angles of the system

concerning the fixed coordinate system can be calculated

using the Euler convention. The calibration process for the

magnetometer can be done by calculating the minimum and

maximum value for all three axes by rotating the sensor in all

directions.

To establish wireless communication HC-06 Bluetooth

module is used for short-range wireless data communication

between the microcontroller and PC. The data rate is 2.1

Mb/s. FTDI32-TTL module is used to configure the baud rate

of the HC-06 module. This is done to connect Bluetooth

using the UART protocol with the RODOS library. Pair the

Bluetooth Module with the PC and link it with Hyper-

Terminal with the correct COM port to examine the data. The

algorithm for the purpose is as follows:

• Make a write function to send the data on the UART

port inside Bluetooth Thread.

• Make a Bluetooth thread to process the data.

• Initialize the peripheral parameters.

• Loop inside Bluetooth thread runs every 1 second.

• Data is printed on Hyper-terminal by writing the data

into a string.

After implementing the algorithm on eclipse IDE, we get 9-

DoF values, 3 for each gyroscope, magnetometer,

accelerometer, and orientation angles pitch, roll, and yaw on

hyper-terminal as shown in fig. 4.

Fig 4. IMU Data Extraction

B. ATTITUDE CONTROL ALGORITHM

The control system is a crucial part of any dynamic

system in which the output of the system tracks the desired

input and output is feedback to compare with the desired

input to reduce error. This closed-loop system is very

important against unmeasured disturbances to keep track of

input. The attitude control algorithm in FloatSat dynamics is

completely based on the published subscribed protocol as

shown in Fig. 5. In this system, some threads represent the

publisher sending the data on communication channels called

topics, and some threads represent subscribers to get the data

from the topics after getting registered to it.

Fig 5. Publish Subscribed Network

The Attitude Control Algorithm for the FloatSat has four

main threads that communicate with each other via

communication channels i.e. sensor thread, telecommand

thread, telemetry thread, and mode thread. The Description

for these threads is as follows:

a. Sensor Thread

The first thread is the “Sensors” thread that runs at a 5ms

time interval. This thread collects sensor information,

processes them, and then publishes the data stored in the

"sensor Data" structure into the "Sensor Data Topic" to be

received by other threads. All the values of sensors i.e.

angular velocity, linear acceleration, Magnetic Flux density,

pitch, roll, yaw, temperature, and motor speed are computed

under this thread. Next, filters are used to minimize the error

of attitude estimation. Mahoney and Madgwick filters are

implemented instead of simple complementary filters because

under complementary filters attitude error is ignored and the

case drifts over time resulting in wrong measurements. The

flow chart of the sensor thread is shown in Fig. 6 and its

working algorithm is as follows:

• Sensor Thread class computes the IMU parameters.

• Initialize peripherals i.e. SPI, ADC, and Encoder. This

is done to link peripherals with the RODOS library.

• If IMU is not properly connected, send the error

message "Failed to communicate with IMU" and end

the thread.

• If IMU data is ready to compute parameters. Calibrate

the Gyroscope, to remove the initial error.

• Time-Loop is running every 5ms to collect the

(Attitude Heading Reference system) AHRS values.

The AHRS contains a different filter to find IMU data

with minimum error.

• Calculate Motor speed and motor current.

• All the sensor data is being published on the sensor

data topic to be received by subscribers.

b. Telecommand Thread

The second thread is the “Telecommand” thread that runs

once data is received. This thread decodes the received

telecommand messages and publishes the data stored in the

telecommand data structure into the telecommand data topic

to be received by other threads. This is done only if the

message is valid. The message body of the telecommand

should have the following format “$Xdata#”

Where,

“$” is the Message Start Character [1 byte].

“#” is the Message End Character [1byte].

“X” is the Message-ID Character [1 byte].

Fig. 6. Algorithm of Sensor Thread

Data are ASCII characters that correspond to a valid

floating-point number [0 –12 bytes]. The message ID

character includes:

• ON and OFF the Telemetry data bypassing T1 and T0

as a message ID respectively.

• Attitude Heading Reference System (AHRS) Mode

from A1 through A8 for Computing Sensor Data

through different Filters. By Default, AHRS mode is

set to Mahoney Filter if the command is not sent

manually.

• System Mode form M0 through M2 for going to

Standby mode, Speed mode, and Velocity mode

respectively. After entering the respective mode, pass

the value of motor speed and FloatSat Velocity e.g.

S+200 and V+20 respectively.

The sample telecommand sequence for velocity mode and

then set velocity to 50 deg/sec is "$M2#" and "$V+50#"

respectively. Fig. 7 describes the working of the

Telecommand thread, which is explained as follows:

Fig. 7. Algorithm of Telecommand Thread

• Initialize the peripherals for Telecommand i.e. LED

and a baud rate.

• The while loop is running to decode the data.

• Suspend until the new data come to the receive

buffer. The new data is the command given by the

user.

• If new data is received in the buffer, the thread will

read the data.

• Decode the received data according to the

telecommand pattern discussed earlier.

c. Telemetry Thread

The third thread is the “Telemetry” thread runs at a

1000ms time interval. Fig. 8 shows telemetry data including

Accelerometer Axis, Gyroscope Axis, Magnetometer Axis,

yaw, pitch, roll, motor speed, and motor current. This thread

publishes the sensor’s information to the ground station i.e.

Hyper-Terminal.

Fig. 8. Telemetry On Hyper-Terminal

Fig. 9 describes the working of the Telemetry thread,

which is explained as follows:

• The time loop is running and prints data on the

terminal every 1 second.

• This thread receives sensor data and telecommand

data.

• If this thread receives telecommand related to

telemetry, the data is printed on Hyper-terminal.

Fig. 9. Algorithm of Telemetry Thread

d. Modes Thread

The fourth thread is the “Modes” thread runs at a 10ms

time interval. This thread runs a different operation mode for

the FloatSat. There are two main modes of operation i.e.

• Speed control mode

• Velocity control mode

The PI controller is implemented to control the motor

speed and a complete description of the code is given in Fig.

10. The reference speed is given by the user by sending a

related telecommand. The speed calculation from the encoder

is the actual speed. Reference speed is subtracted from the

actual speed to generate the error value. This error is

computed in the PI controller and a control signal is

generated. This signal passes to the actuator signal generator

to compute the direction and PWM signals accordingly. The

PWM and direction signal goes to the H-Bridge motor driver

and outputs the desired current. Then the encoder calculates

the actual speed and feeds it back to compute the error. This

feedback loop runs until zero error is achieved and also

counteracts unmeasured disturbances.

Fig. 10. Algorithm of Speed Mode

After implementing this we get the result in which the

telecommand sends to achieve the motor speed of 1000 rpm

and the motor speed is set to our desired value as shown in

Fig. 11.

Fig. 11. Output on hyper terminal for motor speed mode.

For controlling the FloatSat velocity, the PI controller is

implemented and Fig. 12 describes the velocity mode

behavior. The input velocity is given by the user by sending

related telecommands. The IMU measures the angular

velocity which is the actual velocity of the Floating Satellite.

The actual velocity is subtracted from the reference velocity

to calculate the error. This error is then computed in the PI

controller and a control signal is generated. The PWM signal,

direction signal, and currents are generated from the H-bridge

motor driver. The Floating Satellite system stabilizes itself to

the desired velocity by feeding back the IMU data of the

moving Satellite until zero error is achieved.

Fig. 12. Algorithm of Velocity Mode

After completing this on Eclipse IDE, (as in Fig. 13) the

following result in which the telecommand related to velocity

is sent and achieves the same velocity as the value of gz

which is 30 deg/s on the hyper-terminal.

Fig. 13. Output on hyper terminal for velocity mode.

IV. DEBRIS DETECTION MISSION

In this section the space debris detection mission is briefly

explained. The space debris detection mission is designed,

developed and implemented for students to understand

working of a basic radar system which serves to protect the

satellite from space junk present in satellite surroundings.

Initially, the application is designed to identify the space junk

covering 180° in azimuth plan. The hardware setup is shown

in Fig. 14. Where, arduino board along with ultrasonic sensor

and dc motor can be seen.

Fig. 14. Space debris detection mission with 180° coverage.

The space debris detection mission is further improved by

implementing it utilizing STM32 so that it could be

integrated with FlaotSat hardware. Furthermore, the coverage

is also extended to 360° in azimuth plan. The required

necessary threads are added in RODOS to achieve required

functionality. The complete mission is integrated with

FloatSat as shown in Fig. 15. The radar integrated with

floatsat can detect the object in 50 cm range around the

FloatSat. The range of 50 cm is expected to be enhanced by

utilizing Frequency modulated continues wave (FMCW)

radar in future. Where, instead of ultrasonic sensors a highly

directive planar antenna will be utilized along with complete

RF/microwave transceiver.

Fig. 15. Space debris detection mission with 360° coverage

and integrated with FloatSat hardware.

V. CONCLUSION

In this paper, we have discussed the basic hardware and

software setup of FloatSat. The FloatSat platform in basic

configuration can be utilized to implement various satellite

missions. Furthermore, it can be very efficiently utilized to

verify customized algorithms for test and evaluation of

satellite systems and subsystems such as satellite telemetry

and telecommand, satellite attitude control, satellite speed,

velocity control, etc. Furthermore, a space debris detection

mission is designed and integrated with floatsat hardware.

VI. ACKNOWLEDGMENT

The authors would like to extend their sincere

appreciation to chair of computer science VIII,

Aerospace information technology, University of

Wurzburg, Germany for their support and providing the

FloatSat hardware and RODOS operating system.

VII. REFERENCES

1. Gavrilovich, Irina, Sébastien Krut, Marc Gouttefarde,

François Pierrot, and Laurent Dusseau. "Test bench

for nanosatellite attitude determination and control

system ground tests." In 4S: Small Satellites Systems

and Services Symposium. 2014.

2. Tragesser, Steven, and Gregory Agnes. "Simsat: A

ground based platform for demonstrating satellite

attitude dynamics and control." In Annual

Conference, pp. 7-999. 2002.

3. Berk, Josh, Jeremy Straub, and David Whalen. "The

open prototype for educational NanoSats: Fixing the

other side of the small satellite cost equation."

In IEEE Aerospace Conference, pp. 1-16. 2013.

4. Gavrilovich, Irina, Sébastien Krut, Marc Gouttefarde,

François Pierrot, and Laurent Dusseau. "Robotic test

bench for CubeSat ground testing: Concept and

satellite dynamic parameter identification."

In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 5447-

5453. 2015.

5. Suhandinata, and M. N. Setiawan. "Development of

1U CubeSat attitude determination and control

system simulator." In AIP Conference Proceedings,

vol. 2366, no. 1, p. 030003. AIP Publishing LLC,

2021.

6. Curatolo, Andrea, Anton Bahu, and Dario Modenini.

"Automatic Balancing for Satellite Simulators with

Mixed Mechanical and Magnetic

Actuation." Aerospace 9(4), p.223. 2022.

7. Redah, Atheel, Muhammad Faisal, and Sergio

Montenegro. "The Floating Satellite System as an

Educational Platform for Space Applications." In

IEEE 32nd Conference on Software Engineering

Education and Training (CSEE&T), pp. 1-3. 2020.

8. Montenegro, Sergio, and Frank Dannemann.

"RODOS-real time kernel design for

dependability." DASIA 2009-DAta Systems in

Aerospace. 2009.

9. Dannemann, Frank, and Sergio Montenegro.

"Embedded logging framework for spacecrafts."

In DASIA (Data Systems In Aerospace). 2013.

