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Abstract: RodosVisor is an object-oriented and bare-metal virtual machine monitor (VMM) or 
hypervisor designed for the aerospace industry, mainly to provide time and spatial separation to the 
NetworkCentric core avionics machine, Montenegro and Dittrich (2009). The NetworkCentric core 
avionics machine consists of several harmonized components working together to implement dependable 
computing in a simple way, with computing units managed by the local real-time operating system 
RODOS. To support partitioned software architectures such as AIR, Rufino et al. (2009), and MILS, 
DeLong, R. (2007), RodosVisor adapted the Popek and Goldberg’s fidelity, efficiency and resource 
control virtualization requirements, Popek and Goldberg (1974), to the space application domain by 
extending them with extra ones, like timing determinism, reactivity and improved dependability. Another 
distinctive RodosVisor feature is the customized design based on generative programming techniques, 
such as aspect oriented programming and template meta-programming. 
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1. INTRODUCTION 

Unlike past avionics systems, mainly developed using custom 
hardware and software, nowadays, due to the full life cycle 
costs of customized systems, it is noticeable a shift towards 
to the use of COTS-based (Commercial of-the-shelf) systems, 
forcing a migration from federated architectures towards 
Integrated Modular Avionics (IMA) architectures. In a 
federated architecture, individual subsystems perform 
dedicated functions, while in an IMA architecture, a single 
computing platform is used for distinct applications which 
are executed concurrent and independently on a single CPU. 
However, the integration of different COTS components with 
different levels of criticality and predictability, and from 
several suppliers, revealed new challenges such as reusability 
of existing software as well as prevention of safety hazards, 
leading to the adoption of TSP based (Time and Space 
Partitioning) architectures by the aerospace industry. 

Virtualization-based approaches have emerged as candidates 
to build IMA architectures and, among several civil and 
military standards proposed to define an IMA architecture, 
ARINC 653, AEEC (2006), was adopted for the 
implementation of RodosVisor. A virtualization-based 
approach, implemented with deterministic hypercalls, 
efficient inter-partition communication, efficient partition 
switch, low overhead and low footprint, will provide 
significant cost savings through workload consolidation and 
BOM (Bill of Materials) cost minimization, while 
simultaneously retaining the ability to leverage the ecosystem 
of avionic applications through workload isolation, OS co-

location, hot upgradeability and fault-tolerance into a single 
system. 

There are three main approaches to carry out virtualization, 
namely, the VMM or hypervisor, the microkernel and the 
microvisor, Heiser and Leslie (2010), Iqbal et al. (2010); all 
designed as a thin software environment on which multiple 
applications and complete operating systems, each with a 
different objective, can run concurrently in fully protected 
and isolated execution environments or Virtual-Machines 
(VMs) as if they were running directly on the hardware. 
Regardless of the mechanism by which virtualization is 
implemented, one commonality among usage models is that 
the thin software abstraction layer must virtualize system 
resources such as CPU, memory and I/O devices by: (1) 
scheduling the VMs which share the hardware platform, (2) 
managing the resources assigned to each VM, and (3) 
saving/restoring the state when context switching between 
VMs. 

The remaining of this paper is structured as follows. In 
section II related work is surveyed. In section III, an 
overview of RodosVisor architecture is presented. In section 
IV the CPU virtualization is introduced, namely execution 
modes, memory, interrupt and timer virtualization. Section V 
presents experiments with our hypervisor and, the paper 
finishes with conclusions and references. 

2. RELATED WORK 

IBM pioneered virtualization technology long time ago with 
CP/CMS, Creasy (1981), the first full-virtualization system, 



 
 

     

 

to allow time-sharing a computer system among several 
operating systems. As mentioned above, virtualization 
requires a shift in thinking from physical to logical by 
treating IT physical resources as logical resources. When 
used in enterprise and on the desktop, it leverages load 
balancing, server consolidation, legacy code migration, cross 
platform interoperability and also security, Heiser (2008) (see 
Uhlig et al. (2005), for existing virtualization usage models). 

To cope with the emerging trends in embedded systems such 
as increasing complexity and high demand for functional 
safety and security, as well as improved autonomy and 
usability, time-to-market pressure and determinism of 
operation and service, virtualization in embedded systems has 
been focused mainly on co-existence of a fixed set of vastly 
different operating systems (RTOS and GPOS), architectural 
abstraction and, increasingly security, see Rufino et al. 
(2009), Heiser (2008), Lei et al. (2008), Oikawa (2006), 
Aoyagi (2008), among others. Some of them, such as Rufino 
et al. (2009), Beltrame et al. (2010) and Crespo et al. (2009), 
are used in aerospace industry as they are ARINC-653 quasi-
compliant. 

3. RODOSVISOR ARCHITECTURE 

ARINC 653 avionics standard was specified to meet the 
requirements of safety-critical systems which require strictly 
deterministic periodic processing. As such, it specifies the 
essential services for space and time segregation that are 
fundamental to build IMA architectures. RodosVisor is a type 
1, Goldberg (1972), or bare-metal hypervisor, supporting full 
and paravirtualization, alongside with real-time capabilities, 
and, able to execute several applications according to the 
IMA concept. Like Beltrame et al. (2010) and Crespo et al. 
(2009), RodosVisor is an ARINC-653 quasi-compliant 
hypervisor as it implements ARINC-653 services but it 
doesn’t follow standard ARINC-653 APIs (Application 
Programming Interfaces). Some virtualization 
implementations such as Rufino et al. (2009), Lynx Secure, 
Linx (online), and VxWorks 653, VxWorks (online), claim to 
be ARINC-653 complaint. Unlike these hypervisors however, 
RodosVisor is nearly 100% object-oriented implemented and 
to the best of our knowledge, only NOVA, from Steinberg 
and Kaue (2010), follows the same approach. However, 
NOVA presents different objectives and only supports 
hardware-assisted virtualization. 

Fig 1 presents Rodosvisor’s system architecture. Central to 
this organization is the core layer supported by RodosVisor. 
It virtualizes all main hardware components, such as CPU, 
memory and I/O, to implement the partition concept. 
RodosVisor guarantees system integrity by isolating spatial 
and temporally each VM from one another into separate 
memory areas and pre-allocated time quantum for runtime 
activity, respectively. Doing so, partition’s software of 
different criticalities can be executed concurrently on the 
same processor, as presented in the upper layer of Fig. 1: 

1. GPOS partition: composed by a general purpose 
operating system and associated applications; 

2. RTOS partition: consisting of a real-time operating 
system and associated tasks; 

3. OSless partition: that is a bare-metal compiled 
application. 

RodosVisor achieves partition and hardware platform 
transparency through two software layers, the PAL (Partition 
Abstract Layer) and CAL (Core Abstract Layer), 
respectively. PAL defines a set of hypercalls used by 
partitions to request RodosVisor core services, while CAL 
defines a set of function calls to provide hardware services to 
the RodosVisor core layer, i.e., providing portability across 
different processor-based platforms. 

 

Fig. 1. Rodosvisor’s system architecture supporting GPOS, 
RTOS and OSless partitions. 

In order to integrate COTS components with different 
criticality in a virtualization-based IMA, the scheduling 
policy must provide desired real-time performance to the 
integrated system built from several VMs or partition 
subsystems. To be ARINC-653 compliant, at the hypervisor 
level, the main scheduling abstraction, the virtual CPUs 
(vCPUs), created for each partition, are scheduled in a strictly 
deterministic and periodic manner decided statically at 
system integration time. 

The current tendency of SoC (System-on-Chip) along with 
FPGA’s high integration and lower power consumption 
sparked a growing interest for CPU-based FPGA in space 
missions, and so, we chose a FPGA board as a platform for 
RodosVisor implementation and assessment tests. PowerPC 
was the chosen processor because it is a robust low power 
platform and also because Xilinx offers some space qualified 
FPGAs with built-in PowerPC core. 

4. CPU VIRTUALIZATION 

In order to impose spatial separation, RodosVisor provides an 
isolated virtual execution environment to each partition. As 
one of the consequences of running in a isolated execution 
environment is limited access to the processor resources, the 
challenge is how to present the execution environment for 
each VM as if it were the actual hardware with full access to 
it. From the various existing techniques, RodosVisor 



 
 

     

 

implements full-virtualization, because it’s advantageous in 
terms of compatibility and flexibility, and, paravirtualization, 
due to its lower virtualization overhead. The techniques used 
to virtualize execution modes, privileged level, timer and 
interrupt, are discussed in the following subsections. 

4.1 Execution Modes Virtualization 

The PowerPC 405 (PPC405) has two execution modes: user 
and privileged. Only one of the two modes can be active at 
any time. If privileged mode is active, programs (i.e., 
privileged programs) can execute all instructions and access 
all registers. Instead, if user mode is active, programs (i.e., 
user programs) don’t have access to the privileged feature set 
of the processor, thus, they can execute only a subset of all 
instructions and access only a subset of all registers. In user 
mode, the execution attempt of a privileged instruction is 
denied and an exception (i.e., a program exception) is 
generated instead. Other processors than PPC405 have a set 
of sensitive user mode instructions. These instructions, which 
change/expose privileged registers, must also be protected 
from a non-privileged execution mode in RodosVisor. 

RodosVisor runs always in privileged mode, as only this 
mode provides complete control over the underlying 
hardware platform. This way it is able to manage and thus 
share the hardware platform among all VMs. On the other 
hand, each partition runs in user mode, but as execution 
environment of a vCPU expects full access to recourses, a 
mechanism must exist to provide, although indirectly, the lost 
functionality. 

As the user mode execution of a privileged instruction 
generates an exception, this feature is used to catch attempts 
to execute privileged instructions from the VM, and then 
emulate their original functionality, as seen in Fig. 2.  
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Fig. 2. Trap-and-emulate scenario in RodosVisor. 

If the cause of the exception is the execution of a privileged 
instruction while in user mode but the vCPU being in 
privileged mode, the faulting instruction is emulated. As the 
processor registers are mapped in a PPC405 vCPU structure, 
it is possible to know the current execution mode of a vCPU 
by keeping track of its machine state registers (MSRs). If the 
cause of the exception was not the execution of a privileged 
instruction or if the vCPU is in user mode, the exception is 
forwarded back, as is, to the VM. This method is also 
referred to as full-virtualization. That is to say, although the 
CPU is in user mode, if a vCPU is in privileged mode it is fed 
with the illusion that it is in fact in privileged mode 
(virtually-privileged mode). Each privileged instruction has a 
corresponding emulation routine which will be called by the 
exception handler within the faulting VM. 

Paravirtualization, on the other hand, requires VMs to 
collaborate with RodosVisor through a set of hypercalls 
specified at design time. This approach, unlike full-
virtualization, requires the operating system, or partition 
code, to be modified but it is especially useful in architectures 
where full-virtualization is impossible or too demanding, as 
well as when extending the base functionality of a specific 
architecture. RodosVisor implements hypercalls through the 
user mode ‘sc’ instruction which generates a system call 
exception when executed, in a sequence of events similar to 
trap-and-emulate. When a system call exception is generated 
by the processor, the corresponding interrupt service routine 
is called (within RodosVisor’s context). There, the state of 
the vCPU is saved and, if the vCPU is in privileged mode, the 
hypercall requested is executed, otherwise the vCPU can only 
be in user mode and the exception is forwarded back to the 
vCPU. Then, in either case, RodosVisor restores the vCPU, 
and execution of the VM is resumed. 

4.2 Ring compression 

Most embedded processors, such as PPC405, provide only 
one unprivileged mode. In a simplistic approach, RodosVisor 
runs in the privileged mode (supervisor state) and VMs run in 
user mode (problem state). However if a VM runs a GPOS 
and respective applications, another intermediate mode is 
needed in order to isolate them from each other as in a non-
virtualized environment. This way, the guest GPOS kernel is 
isolated from its applications and RodosVisor is isolated from 
guest GPOSes. To do so, a similar strategy to those adopted 
by EmbeddedXEN, ISYS (2010), IXIV VMM, Aoyagi 
(2008), xLuna, Beltrame (2010), and Xen-on-ARM, Seo 
(2008), will be followed to split the problem state in two 
logical modes: guest GPOS kernel mode and application 
mode (Fig. 3). 

In the PPC405 processor, the execution modes are controlled 
by MSR[PR] (i.e., the bit field PR of the Machine State 
Register). Additionally, to distinguish between user mode 
and kernel mode in the VM, the PPC405 takes advantage of 
MSR[IR] and MSR[DR] fields together with write/execution 
attribute bits found in the memory management unit, MMU. 



 
 

     

 

 

Fig. 3. Execution modes: native vs. RodosVisor. 

A full implementation of ring compression in PPC405 takes 
advantage of its memory management mechanisms, but due 
lack of space it will not be detailed in this paper.  

4.3 Interrupt virtualization 

When a VM is running, any kind of interrupt, or exception, 
can occur. However, the destination of the interrupt can be 
RodosVisor or the VM itself. All interrupts are first handled 
by RodosVisor, and after dispatched to VMs accordingly, as 
presented in Fig. 4.  

 

Fig. 4. RodosVisor default interrupt processing. 

There are three classes of interrupts: 

1. Real hardware interrupts which occur while a given VM 
is running and is intercepted by RodosVisor and 
handled bottom-up, i.e., from RodosVisor to guest OS; 

2. Interrupts related to CPU state, such as trap and faults 
fired inside a VM that are handled top-down, i.e., from 
guest OS to RodosVisor and are delivered back to the 
running VM; 

3. Virtual interrupts forward to those VMs containing the 
virtual devices. 

By default unless changed at design time, RodosVisor 
doesn’t discriminate between interrupts related to real-time 
activities and interrupts related to non real-time activities. 
Therefore, it intercepts and manages all hardware interrupts 
and delivers only virtual interrupts to the VMs. The interrupt 
will be delivered only to the running VM, or temporal 
separation would be lost. For all other VMs, the interrupt is 
enqueued, by setting the interrupt pending of the respective 
vCPU, so that it is handled when the VM resumes execution. 

4.4 Timer virtualization 

The RodosVisor timer can be seen as a special case of 
interrupt. This is due to the fact that the timer is the heart of 
the system, i.e., it multiplexes the hardware resources among 
partitions, and inside these, among applications. In the case 
of RodosVisor this is especially true in order to maintain 
temporal isolation between partitions. 
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Fig. 5. RodosVisor virtual PIT state diagram. 

As there are two levels of timing, RodosVisor level and 
partition level, two timers are required. As in other 
architectures PPC405 has just one PIT (Programmable 
Interval Timer), so RodosVisor implements a virtual timer to 
provide VM scheduling service as well as partially some VM 
inner timing services. In doing so, the internal timing 



 
 

     

 

resolutions (i.e., clock tick) of all VMs must be known before 
hand, i.e., at design time. This way, if the PIT of the running 
VM expires before the next scheduling point, the PIT of the 
processor is configured according to the VM, otherwise, it is 
configured with remaining time to the next scheduling point, 
as presented in Fig. 5. 

This is the default RodosVisor virtual PIT approach that only 
raises virtual timer interrupts to the running VM, but how to 
handle interrupts to inactive VMs? Dispatching virtual 
interrupt to appropriated VMs immediately after hardware 
interrupt firing, preserves timely delivery of interrupts but 
can break the temporal separation due to context switching 
cost. For inactive VMs, RodosVisor ignores the fired 
interrupts and only implements a virtual tickless timekeeping 
mechanism based on TB (Time-Base) unit to measure the 
passage of time and keep track of the wall-clock time. 
Therefore, when a VM is rescheduled for execution, its 
internal clock tick and all timing-related data structures are 
recalibrated to account for the time elapsed since its previous 
CPU execution quantum. 

4. EXPERIMENTS 

To assess the virtualization overhead of RodosVisor, several 
experiment have been conducted. More specifically, these 
experiments have measured: (1) RodosVisor’s context saving 
overhead; (2) privileged instructions decoding overhead; (3) 
virtual instruction drift; (4) virtual instruction total execution 
time; (5) virtual PIT interrupt latency; (6) VM’s context 
saving overhead. In these experiments the mtpit (move to 
PIT) instruction is used. 

To conduct the experiments RodosVisor runs only one 
OSless partition, executing the procedure seen in Fig. 6. For a 
better understanding of the experiment the following 
explanation will start from (a). 

In (a) the timestamp before the (virtual) execution of mtpit is 
saved. Then, when mtpit is executed, a Program exception is 
generated within RodosVisor’s context, which saves the 
virtual context and which after that saves the timestamp in (b) 
in a special register visible from virtual (i.e. user) mode. 
Subtracting (b) to (a), RodosVisor’s context saving overhead 
is obtained. 

After saving the context, and the timestamp in (b), 
RodosVisor’s decodes the faulting instruction (i.e. mtpit) and 
then the timestamp in (c) is saved in another special register 
visible from virtual mode. Subtracting (c) to (b), 
RodosVisor’s privileged instruction decoding overhead is 
obtained. 

After decoding the privileged instruction, the corresponding 
emulation is called, and there, before the execution of the true 
mtpit, the timestamp in (d) is also recorded. Subtracting (d) to 
(a) the virtual mtpit drift is obtained; that is, the time it takes 
from the execution of mtpit in virtual mode to the actual 
modification of the PIT in real mode. 

 

Fig. 6. Procedure used to assess RodosVisor’s performance. 

When the emulation routine completes and the virtual context 
restored, the system returns again to the virtual context. 
There, the timestamp in (e) is saved. Subtracting (a) to (e) the 
virtual mtpit total execution time is obtained. 

Then, the VM returns from the interrupt and locks in a 
endless wait loop until the PIT expires again  and a PIT 
interrupt is generated in RodosVisor’s context, which 
redirects the interrupt to the VM, generating a virtual PIT 
interrupt. The VM, before saving the context records the 
timestamp in (f). With (f), (d) and period it is possible to 
determine the PIT interrupt latency through the formula: 

latency = (f) – ((d) + period). 

After saving the context, timestamp (g) is obtained. 
Subtracting (f) to (g) the virtual context saving overhead is 
obtained. 

Finally the results are displayed; only raw data is presented, 
all calculations are made on a host computer. Because of this 
process’s structure the first set of data is ignored, as well as 
the last set, if incomplete. 

The results we obtained are summarized in Table I. With 
quantum of 42949672 CPU cycles 391 data sets were 
obtained and averaged using the arithmetic mean. 

 



 
 

     

 

Table 1.  Rodosvisor’s performance summary 

Measurement CPU cycles 
RodosVisor’s context saving overhead 301 
RodosVisor’s instruction decoding overhead 351 
Virtual mtpit drift 736 
Virtual mtpit total execution time 1308 
PIT interrupt latency 1393 
VM’s context saving overhead 2963 
  

5. CONCLUSIONS 

In this paper RodosVisor is presented. It is an object-oriented 
and bare-metal virtual machine monitor that enforces spatial 
and temporal separation, in order to meet the requirements of 
safety-critical systems defined in ARINC 653 avionics 
standards. Currently is running on a Xilinx FPGA board with 
built-in PowerPC core, thus demonstrating the main concepts 
of CPU virtualization that were presented in this paper. 

The added value of object-oriented implementation will be 
visible and profitable at integration time, where generative 
techniques such as aspect-oriented programming (AOP) 
and/or template meta-programming will help designing fully 
customizable and optimized hypervisor. The implemented 
integration tool allows fine-grained selection of the 
functionality, as for example to replace the scheduling policy, 
as well as coarse-grained approach to remove complete block 
of functionality if it is not required. 

RodosVisor, when fully implemented, will be able to provide 
system designers with the known benefits provided by a 
hypervisor-based system, together with compatibility with 
already existent software and with an augment feature set 
through paravirtualization, reducing drastically the overhead 
created by virtualization. The augmented feature will include 
I/O virtualization, inter-VM communication, UIO drivers, 
health monitoring, among other extensions that developers 
will be able to add alongside the already existent ones. Some 
features still need to be implemented; however, the major 
issues seem to have been already overcame which clears the 
way for a successful result. 
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