

RodosVisor - an object-oriented and customizable hypervisor:
The CPU virtualization



Abstract: RodosVisor is an object-oriented and bare-metal virtual machine monitor (VMM) or
hypervisor designed for the aerospace industry, mainly to provide time and spatial separation to the
NetworkCentric core avionics machine, Montenegro and Dittrich (2009). The NetworkCentric core
avionics machine consists of several harmonized components working together to implement dependable
computing in a simple way, with computing units managed by the local real-time operating system
RODOS. To support partitioned software architectures such as AIR, Rufino et al. (2009), and MILS,
DeLong, R. (2007), RodosVisor adapted the Popek and Goldberg’s fidelity, efficiency and resource
control virtualization requirements, Popek and Goldberg (1974), to the space application domain by
extending them with extra ones, like timing determinism, reactivity and improved dependability. Another
distinctive RodosVisor feature is the customized design based on generative programming techniques,
such as aspect oriented programming and template meta-programming.

Keywords: Hypervisors; Safety-critical; IMA Architecture; Virtual Machine Monitor; Partitioned
Software Architecture; Ring Decompression; Virtualization; Real-time; ARINC 653.



1. INTRODUCTION

Unlike past avionics systems, mainly developed using custom
hardware and software, nowadays, due to the full life cycle
costs of customized systems, it is noticeable a shift towards
to the use of COTS-based (Commercial of-the-shelf) systems,
forcing a migration from federated architectures towards
Integrated Modular Avionics (IMA) architectures. In a
federated architecture, individual subsystems perform
dedicated functions, while in an IMA architecture, a single
computing platform is used for distinct applications which
are executed concurrent and independently on a single CPU.
However, the integration of different COTS components with
different levels of criticality and predictability, and from
several suppliers, revealed new challenges such as reusability
of existing software as well as prevention of safety hazards,
leading to the adoption of TSP based (Time and Space
Partitioning) architectures by the aerospace industry.

Virtualization-based approaches have emerged as candidates
to build IMA architectures and, among several civil and
military standards proposed to define an IMA architecture,
ARINC 653, AEEC (2006), was adopted for the
implementation of RodosVisor. A virtualization-based
approach, implemented with deterministic hypercalls,
efficient inter-partition communication, efficient partition
switch, low overhead and low footprint, will provide
significant cost savings through workload consolidation and
BOM (Bill of Materials) cost minimization, while
simultaneously retaining the ability to leverage the ecosystem
of avionic applications through workload isolation, OS co-

location, hot upgradeability and fault-tolerance into a single
system.

There are three main approaches to carry out virtualization,
namely, the VMM or hypervisor, the microkernel and the
microvisor, Heiser and Leslie (2010), Iqbal et al. (2010); all
designed as a thin software environment on which multiple
applications and complete operating systems, each with a
different objective, can run concurrently in fully protected
and isolated execution environments or Virtual-Machines
(VMs) as if they were running directly on the hardware.
Regardless of the mechanism by which virtualization is
implemented, one commonality among usage models is that
the thin software abstraction layer must virtualize system
resources such as CPU, memory and I/O devices by: (1)
scheduling the VMs which share the hardware platform, (2)
managing the resources assigned to each VM, and (3)
saving/restoring the state when context switching between
VMs.

The remaining of this paper is structured as follows. In
section II related work is surveyed. In section III, an
overview of RodosVisor architecture is presented. In section
IV the CPU virtualization is introduced, namely execution
modes, memory, interrupt and timer virtualization. Section V
presents experiments with our hypervisor and, the paper
finishes with conclusions and references.

2. RELATED WORK

IBM pioneered virtualization technology long time ago with
CP/CMS, Creasy (1981), the first full-virtualization system,

to allow time-sharing a computer system among several
operating systems. As mentioned above, virtualization
requires a shift in thinking from physical to logical by
treating IT physical resources as logical resources. When
used in enterprise and on the desktop, it leverages load
balancing, server consolidation, legacy code migration, cross
platform interoperability and also security, Heiser (2008) (see
Uhlig et al. (2005), for existing virtualization usage models).

To cope with the emerging trends in embedded systems such
as increasing complexity and high demand for functional
safety and security, as well as improved autonomy and
usability, time-to-market pressure and determinism of
operation and service, virtualization in embedded systems has
been focused mainly on co-existence of a fixed set of vastly
different operating systems (RTOS and GPOS), architectural
abstraction and, increasingly security, see Rufino et al.
(2009), Heiser (2008), Lei et al. (2008), Oikawa (2006),
Aoyagi (2008), among others. Some of them, such as Rufino
et al. (2009), Beltrame et al. (2010) and Crespo et al. (2009),
are used in aerospace industry as they are ARINC-653 quasi-
compliant.

3. RODOSVISOR ARCHITECTURE

ARINC 653 avionics standard was specified to meet the
requirements of safety-critical systems which require strictly
deterministic periodic processing. As such, it specifies the
essential services for space and time segregation that are
fundamental to build IMA architectures. RodosVisor is a type
1, Goldberg (1972), or bare-metal hypervisor, supporting full
and paravirtualization, alongside with real-time capabilities,
and, able to execute several applications according to the
IMA concept. Like Beltrame et al. (2010) and Crespo et al.
(2009), RodosVisor is an ARINC-653 quasi-compliant
hypervisor as it implements ARINC-653 services but it
doesn’t follow standard ARINC-653 APIs (Application
Programming Interfaces). Some virtualization
implementations such as Rufino et al. (2009), Lynx Secure,
Linx (online), and VxWorks 653, VxWorks (online), claim to
be ARINC-653 complaint. Unlike these hypervisors however,
RodosVisor is nearly 100% object-oriented implemented and
to the best of our knowledge, only NOVA, from Steinberg
and Kaue (2010), follows the same approach. However,
NOVA presents different objectives and only supports
hardware-assisted virtualization.

Fig 1 presents Rodosvisor’s system architecture. Central to
this organization is the core layer supported by RodosVisor.
It virtualizes all main hardware components, such as CPU,
memory and I/O, to implement the partition concept.
RodosVisor guarantees system integrity by isolating spatial
and temporally each VM from one another into separate
memory areas and pre-allocated time quantum for runtime
activity, respectively. Doing so, partition’s software of
different criticalities can be executed concurrently on the
same processor, as presented in the upper layer of Fig. 1:

1. GPOS partition: composed by a general purpose
operating system and associated applications;

2. RTOS partition: consisting of a real-time operating
system and associated tasks;

3. OSless partition: that is a bare-metal compiled
application.

RodosVisor achieves partition and hardware platform
transparency through two software layers, the PAL (Partition
Abstract Layer) and CAL (Core Abstract Layer),
respectively. PAL defines a set of hypercalls used by
partitions to request RodosVisor core services, while CAL
defines a set of function calls to provide hardware services to
the RodosVisor core layer, i.e., providing portability across
different processor-based platforms.

Fig. 1. Rodosvisor’s system architecture supporting GPOS,
RTOS and OSless partitions.

In order to integrate COTS components with different
criticality in a virtualization-based IMA, the scheduling
policy must provide desired real-time performance to the
integrated system built from several VMs or partition
subsystems. To be ARINC-653 compliant, at the hypervisor
level, the main scheduling abstraction, the virtual CPUs
(vCPUs), created for each partition, are scheduled in a strictly
deterministic and periodic manner decided statically at
system integration time.

The current tendency of SoC (System-on-Chip) along with
FPGA’s high integration and lower power consumption
sparked a growing interest for CPU-based FPGA in space
missions, and so, we chose a FPGA board as a platform for
RodosVisor implementation and assessment tests. PowerPC
was the chosen processor because it is a robust low power
platform and also because Xilinx offers some space qualified
FPGAs with built-in PowerPC core.

4. CPU VIRTUALIZATION

In order to impose spatial separation, RodosVisor provides an
isolated virtual execution environment to each partition. As
one of the consequences of running in a isolated execution
environment is limited access to the processor resources, the
challenge is how to present the execution environment for
each VM as if it were the actual hardware with full access to
it. From the various existing techniques, RodosVisor

implements full-virtualization, because it’s advantageous in
terms of compatibility and flexibility, and, paravirtualization,
due to its lower virtualization overhead. The techniques used
to virtualize execution modes, privileged level, timer and
interrupt, are discussed in the following subsections.

4.1 Execution Modes Virtualization

The PowerPC 405 (PPC405) has two execution modes: user
and privileged. Only one of the two modes can be active at
any time. If privileged mode is active, programs (i.e.,
privileged programs) can execute all instructions and access
all registers. Instead, if user mode is active, programs (i.e.,
user programs) don’t have access to the privileged feature set
of the processor, thus, they can execute only a subset of all
instructions and access only a subset of all registers. In user
mode, the execution attempt of a privileged instruction is
denied and an exception (i.e., a program exception) is
generated instead. Other processors than PPC405 have a set
of sensitive user mode instructions. These instructions, which
change/expose privileged registers, must also be protected
from a non-privileged execution mode in RodosVisor.

RodosVisor runs always in privileged mode, as only this
mode provides complete control over the underlying
hardware platform. This way it is able to manage and thus
share the hardware platform among all VMs. On the other
hand, each partition runs in user mode, but as execution
environment of a vCPU expects full access to recourses, a
mechanism must exist to provide, although indirectly, the lost
functionality.

As the user mode execution of a privileged instruction
generates an exception, this feature is used to catch attempts
to execute privileged instructions from the VM, and then
emulate their original functionality, as seen in Fig. 2.

Partition

Execute a
privileged
instruction

Processor RodosVisor

Generates an
exception

Save vCPU
context

Partition in user mode

Generate a program
exception in the
virtual CPU

Emulate privileged
instruction

Partition in priv. mode

Restore vCPU
context

alt

Fig. 2. Trap-and-emulate scenario in RodosVisor.

If the cause of the exception is the execution of a privileged
instruction while in user mode but the vCPU being in
privileged mode, the faulting instruction is emulated. As the
processor registers are mapped in a PPC405 vCPU structure,
it is possible to know the current execution mode of a vCPU
by keeping track of its machine state registers (MSRs). If the
cause of the exception was not the execution of a privileged
instruction or if the vCPU is in user mode, the exception is
forwarded back, as is, to the VM. This method is also
referred to as full-virtualization. That is to say, although the
CPU is in user mode, if a vCPU is in privileged mode it is fed
with the illusion that it is in fact in privileged mode
(virtually-privileged mode). Each privileged instruction has a
corresponding emulation routine which will be called by the
exception handler within the faulting VM.

Paravirtualization, on the other hand, requires VMs to
collaborate with RodosVisor through a set of hypercalls
specified at design time. This approach, unlike full-
virtualization, requires the operating system, or partition
code, to be modified but it is especially useful in architectures
where full-virtualization is impossible or too demanding, as
well as when extending the base functionality of a specific
architecture. RodosVisor implements hypercalls through the
user mode ‘sc’ instruction which generates a system call
exception when executed, in a sequence of events similar to
trap-and-emulate. When a system call exception is generated
by the processor, the corresponding interrupt service routine
is called (within RodosVisor’s context). There, the state of
the vCPU is saved and, if the vCPU is in privileged mode, the
hypercall requested is executed, otherwise the vCPU can only
be in user mode and the exception is forwarded back to the
vCPU. Then, in either case, RodosVisor restores the vCPU,
and execution of the VM is resumed.

4.2 Ring compression

Most embedded processors, such as PPC405, provide only
one unprivileged mode. In a simplistic approach, RodosVisor
runs in the privileged mode (supervisor state) and VMs run in
user mode (problem state). However if a VM runs a GPOS
and respective applications, another intermediate mode is
needed in order to isolate them from each other as in a non-
virtualized environment. This way, the guest GPOS kernel is
isolated from its applications and RodosVisor is isolated from
guest GPOSes. To do so, a similar strategy to those adopted
by EmbeddedXEN, ISYS (2010), IXIV VMM, Aoyagi
(2008), xLuna, Beltrame (2010), and Xen-on-ARM, Seo
(2008), will be followed to split the problem state in two
logical modes: guest GPOS kernel mode and application
mode (Fig. 3).

In the PPC405 processor, the execution modes are controlled
by MSR[PR] (i.e., the bit field PR of the Machine State
Register). Additionally, to distinguish between user mode
and kernel mode in the VM, the PPC405 takes advantage of
MSR[IR] and MSR[DR] fields together with write/execution
attribute bits found in the memory management unit, MMU.

Fig. 3. Execution modes: native vs. RodosVisor.

A full implementation of ring compression in PPC405 takes
advantage of its memory management mechanisms, but due
lack of space it will not be detailed in this paper.

4.3 Interrupt virtualization

When a VM is running, any kind of interrupt, or exception,
can occur. However, the destination of the interrupt can be
RodosVisor or the VM itself. All interrupts are first handled
by RodosVisor, and after dispatched to VMs accordingly, as
presented in Fig. 4.

Fig. 4. RodosVisor default interrupt processing.

There are three classes of interrupts:

1. Real hardware interrupts which occur while a given VM
is running and is intercepted by RodosVisor and
handled bottom-up, i.e., from RodosVisor to guest OS;

2. Interrupts related to CPU state, such as trap and faults
fired inside a VM that are handled top-down, i.e., from
guest OS to RodosVisor and are delivered back to the
running VM;

3. Virtual interrupts forward to those VMs containing the
virtual devices.

By default unless changed at design time, RodosVisor
doesn’t discriminate between interrupts related to real-time
activities and interrupts related to non real-time activities.
Therefore, it intercepts and manages all hardware interrupts
and delivers only virtual interrupts to the VMs. The interrupt
will be delivered only to the running VM, or temporal
separation would be lost. For all other VMs, the interrupt is
enqueued, by setting the interrupt pending of the respective
vCPU, so that it is handled when the VM resumes execution.

4.4 Timer virtualization

The RodosVisor timer can be seen as a special case of
interrupt. This is due to the fact that the timer is the heart of
the system, i.e., it multiplexes the hardware resources among
partitions, and inside these, among applications. In the case
of RodosVisor this is especially true in order to maintain
temporal isolation between partitions.

Save the
vCPU state

vmPIT <
timeSlice

Yes

PIT interrupt

timeSlice =
timeSlice - vmPIT

No

vmPIT = vmPIT -
timeSlice

timeSlice = 0

Yes

No

Scheduling point

PIT =
min(timeSlice,

vmPIT)

Restore the
vCPU state

End

Fig. 5. RodosVisor virtual PIT state diagram.

As there are two levels of timing, RodosVisor level and
partition level, two timers are required. As in other
architectures PPC405 has just one PIT (Programmable
Interval Timer), so RodosVisor implements a virtual timer to
provide VM scheduling service as well as partially some VM
inner timing services. In doing so, the internal timing

resolutions (i.e., clock tick) of all VMs must be known before
hand, i.e., at design time. This way, if the PIT of the running
VM expires before the next scheduling point, the PIT of the
processor is configured according to the VM, otherwise, it is
configured with remaining time to the next scheduling point,
as presented in Fig. 5.

This is the default RodosVisor virtual PIT approach that only
raises virtual timer interrupts to the running VM, but how to
handle interrupts to inactive VMs? Dispatching virtual
interrupt to appropriated VMs immediately after hardware
interrupt firing, preserves timely delivery of interrupts but
can break the temporal separation due to context switching
cost. For inactive VMs, RodosVisor ignores the fired
interrupts and only implements a virtual tickless timekeeping
mechanism based on TB (Time-Base) unit to measure the
passage of time and keep track of the wall-clock time.
Therefore, when a VM is rescheduled for execution, its
internal clock tick and all timing-related data structures are
recalibrated to account for the time elapsed since its previous
CPU execution quantum.

4. EXPERIMENTS

To assess the virtualization overhead of RodosVisor, several
experiment have been conducted. More specifically, these
experiments have measured: (1) RodosVisor’s context saving
overhead; (2) privileged instructions decoding overhead; (3)
virtual instruction drift; (4) virtual instruction total execution
time; (5) virtual PIT interrupt latency; (6) VM’s context
saving overhead. In these experiments the mtpit (move to
PIT) instruction is used.

To conduct the experiments RodosVisor runs only one
OSless partition, executing the procedure seen in Fig. 6. For a
better understanding of the experiment the following
explanation will start from (a).

In (a) the timestamp before the (virtual) execution of mtpit is
saved. Then, when mtpit is executed, a Program exception is
generated within RodosVisor’s context, which saves the
virtual context and which after that saves the timestamp in (b)
in a special register visible from virtual (i.e. user) mode.
Subtracting (b) to (a), RodosVisor’s context saving overhead
is obtained.

After saving the context, and the timestamp in (b),
RodosVisor’s decodes the faulting instruction (i.e. mtpit) and
then the timestamp in (c) is saved in another special register
visible from virtual mode. Subtracting (c) to (b),
RodosVisor’s privileged instruction decoding overhead is
obtained.

After decoding the privileged instruction, the corresponding
emulation is called, and there, before the execution of the true
mtpit, the timestamp in (d) is also recorded. Subtracting (d) to
(a) the virtual mtpit drift is obtained; that is, the time it takes
from the execution of mtpit in virtual mode to the actual
modification of the PIT in real mode.

Fig. 6. Procedure used to assess RodosVisor’s performance.

When the emulation routine completes and the virtual context
restored, the system returns again to the virtual context.
There, the timestamp in (e) is saved. Subtracting (a) to (e) the
virtual mtpit total execution time is obtained.

Then, the VM returns from the interrupt and locks in a
endless wait loop until the PIT expires again and a PIT
interrupt is generated in RodosVisor’s context, which
redirects the interrupt to the VM, generating a virtual PIT
interrupt. The VM, before saving the context records the
timestamp in (f). With (f), (d) and period it is possible to
determine the PIT interrupt latency through the formula:

latency = (f) – ((d) + period).

After saving the context, timestamp (g) is obtained.
Subtracting (f) to (g) the virtual context saving overhead is
obtained.

Finally the results are displayed; only raw data is presented,
all calculations are made on a host computer. Because of this
process’s structure the first set of data is ignored, as well as
the last set, if incomplete.

The results we obtained are summarized in Table I. With
quantum of 42949672 CPU cycles 391 data sets were
obtained and averaged using the arithmetic mean.

Table 1. Rodosvisor’s performance summary

Measurement CPU cycles
RodosVisor’s context saving overhead 301
RodosVisor’s instruction decoding overhead 351
Virtual mtpit drift 736
Virtual mtpit total execution time 1308
PIT interrupt latency 1393
VM’s context saving overhead 2963

5. CONCLUSIONS

In this paper RodosVisor is presented. It is an object-oriented
and bare-metal virtual machine monitor that enforces spatial
and temporal separation, in order to meet the requirements of
safety-critical systems defined in ARINC 653 avionics
standards. Currently is running on a Xilinx FPGA board with
built-in PowerPC core, thus demonstrating the main concepts
of CPU virtualization that were presented in this paper.

The added value of object-oriented implementation will be
visible and profitable at integration time, where generative
techniques such as aspect-oriented programming (AOP)
and/or template meta-programming will help designing fully
customizable and optimized hypervisor. The implemented
integration tool allows fine-grained selection of the
functionality, as for example to replace the scheduling policy,
as well as coarse-grained approach to remove complete block
of functionality if it is not required.

RodosVisor, when fully implemented, will be able to provide
system designers with the known benefits provided by a
hypervisor-based system, together with compatibility with
already existent software and with an augment feature set
through paravirtualization, reducing drastically the overhead
created by virtualization. The augmented feature will include
I/O virtualization, inter-VM communication, UIO drivers,
health monitoring, among other extensions that developers
will be able to add alongside the already existent ones. Some
features still need to be implemented; however, the major
issues seem to have been already overcame which clears the
way for a successful result.

REFERENCES

AEEC, (2006). ARINC 653P1-3 Avionics Application
Software Standard Interface. Part 1, Required Services.
Airlines Electronic Engineering Committee.

Aoyagi, S. (2008). IXIV VMM: A VMM on 2-Level Ring
Architecture. IEEE 8th International Conference on
Computer and Information Technology Workshops,
Sydney, Australia.

Beltrame, G., Fossati, L., Zulianello, M., Braga, P.,
Henriques, L. (2010). XLUNA: A Real-time,
Dependable Kernel for Embedded Systems. IP-SOC
Conference.

Creasy, R. (1981). The origin of the VM/370 time-sharing
system. IBM Journal of Research & Development, Vol.
25, No. 5, 483-490.

Crespo A., Ripoll, I., Masmano, M., Arberet, P., and Metge,
J. (2009). XTRATUM: an open source hypervisor for

TSP embedded systems in aerospace. Data Systems In
Aerospace - DASIA, Istanbul, Turkey.

DeLong, R. (2007). MILS: Protection our most Vital
Systems. Military Embedded Systems.

Goldberg, R. (1972). Architectural principles for virtual
computer systems. Ph.D. Thesis, Division of Engineering
and Applied Physics Harvard University, Cambridge
Massachusetts

Heiser, G. (2008). The Role of Virtualization in Embedded
Systems., 1st Workshop on Isolation and Integration in
Embedded Systems, Glasgow, UK.

Heiser, G. (2008) Microkernel-Based Virtualization Meets
Embedded Security Challenges.
http://rtcmagazine.com/articles/view/100958.

Heiser, G., and Leslie, B. (2010). The OKL4 Microvisor:
Convergence Point of Microkernels and Hypervisors.
ACM SIGCOMM, New Delhi, India.

ISYS Group. (2010). PENAR: Porting XEN on ARM-based
Embedded Systems, Final technical report.
 http://sourceforge.net/projects/embeddedxen/files/.

Lei, J., Yang, X., Xiong, G., Jiang, W., Liao, Y. (2008).
VMM-Based Real-Time Embedded System.
International Conference on Embedded Software and
Systems Symposia. Chengdu, Sichuan, China.

Lynx. (online). LynxSecure Embedded Hypervisor and
Separation Kernel. http://www.lynuxworks.com/virtua
lization /hypervisor.php.

Montenegro, S., and Dittrich, L. (2009). Network Centric
Core Avionics. Data Systems In Aerospace - DASIA,
Istanbul, Turkey.

Iqbal, A., Sadeque, N., and Mutia, R. (2010). An Overview
of Microkernel, Hypervisor and Microvisor
Virtualization Approaches for Embedded Systems.
http://www.eit.lth.se/fileadmin/eit/project/142/virtApproa
ches.pdf.

Oikawa, S. (2006). Linux/RTOS Hybrid Operating
Environment on Gandalf Virtual Machine Monitor.
Embedded and Ubiquitous Computing, Lecture Notes in
Computer Science, Volume 4096/2006, pg. 287-296.

Popek, G. and Goldberg, R. (1974). Formal Requirements for
Virtualizable Third Generation Architectures.
Communications of the ACM, 17 (7), 412-421.

Rufino, J., Craveiro J., Schoofs, T., Tatibana, C., and
Windsor, J. (2009). AIR Technology: a step towards
ARINC 653 in space. Data Systems In Aerospace -
DASIA, Istanbul, Turkey.

Seo, S. (2008). Research on System Virtualization using Xen
Hypervisor for ARM based secure mobile phones. Fifth
IEEE Consumer Communications & Networking
Conference – CCNC’08, Las Vegas, Nevada.

Steinberg, U. and Kaue, B. (2010). NOVA: A
Microhypervisor-Based Secure Virtualization
Architecture. The European Professional Society on
Computer Systems (Eurosys) conference, Paris, France

Uhlig, R., Neiger G., Rodgers, D., Santoni A., Martins, F.,
Anderson, A., Steven, B., Kägi, A., Leung, F., Smith L.
(2005). Intel Virtualization Technology. IEEE Computer,
vol. 38 no. 5, 48-56.

